IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v186y2024ics1366554524001376.html
   My bibliography  Save this article

Real-time scheduling and routing of shared autonomous vehicles considering platooning in intermittent segregated lanes and priority at intersections in urban corridors

Author

Listed:
  • Wang, Zhimian
  • An, Kun
  • Correia, Gonçalo
  • Ma, Wanjing

Abstract

Anticipating the forthcoming integration of shared autonomous vehicles (SAVs) into urban networks, the imperative of devising an efficient real-time scheduling and routing strategy for these vehicles becomes evident if one is to maximize their potential in enhancing travel efficiency. In this study, we address the problem of jointly scheduling and routing SAVs across an urban network with the possibility of platooning the vehicles at intersections to reduce their travel time. We argue that this is especially useful in large urban areas. We introduce a novel vehicle scheduling and routing method that allows a specific number of SAVs to converge at the intersections of urban corridors within designated time intervals, facilitating the formation of SAV platoons. Dedicated lanes and signal priority control are activated to ensure that these platoons go through the corridors efficiently. Based on the above concept, we propose a linear integer programming model to minimize the total travel time of SAVs and the delays experienced by the conventional vehicles due to SAV priority, thereby optimizing the overall performance of the road network. For large instances, we develop a two-stage heuristic algorithm to solve it faster. In the first stage, leveraging an evaluation index that manifests the compatibility of each vehicle-to-request combination, we allocate passenger requests to a fleet of SAVs. In the second stage, a customized genetic algorithm is designed to coordinate the paths of various SAVs, thus achieving the desired vehicle platooning effect. The optimization method is tested on a real-world road network in Shanghai, China. The results display a remarkable reduction of 15.76 % in the total travel time of the SAVs that formed platoons. The overall performance of the road network could be improved with the total travel time increase of conventional vehicles significantly smaller than the reduction observed in SAVs’ total travel time.

Suggested Citation

  • Wang, Zhimian & An, Kun & Correia, Gonçalo & Ma, Wanjing, 2024. "Real-time scheduling and routing of shared autonomous vehicles considering platooning in intermittent segregated lanes and priority at intersections in urban corridors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001376
    DOI: 10.1016/j.tre.2024.103546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524001376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.