IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v194y2025ics1366554524005295.html
   My bibliography  Save this article

Two-dimensional lane configuration design approach for Autonomous Vehicle Dedicated Lanes in urban networks

Author

Listed:
  • Chen, Xiangdong
  • Zhang, Fang
  • Guan, Hao
  • Meng, Qiang

Abstract

This study focuses on optimizing Autonomous Vehicle Dedicated Lanes (AVDLs) in urban networks, a critical step in managing mixed traffic where autonomous vehicles (AVs) and human-driven vehicles (HVs) coexist. Traditional AVDL deployment strategies have mainly optimized the number of AVDLs without adequately considering the directional functionality of lanes or their various lane-specific travel costs at intersections. To address these gaps, we propose a two-dimensional lane configuration approach that optimizes both the number of AVDLs on each road segment and their directional functionality for various traffic movements. Intersection delays are incorporated into the travel cost computation, through identifying the specific right-of-way allocations associated with different lane types. The proposed approach enables a more precise calculation of traffic volumes and travel costs on each lane-specific path, by categorizing travel into AVDL-only paths, hybrid-lane paths, and regular lane (RL)-only paths. A lane-specific user equilibrium (UE) model is developed to capture traffic dynamics on various lane types, with the existence and uniqueness of the UE solution rigorously proven. The AVDL configuration optimization is efficiently solved using a bi-level solution method. This method integrates a customized Monte Carlo Tree Search (MCTS) algorithm with a traffic accommodation ranking approach and a Frank–Wolfe-type algorithm with a link pruning technique to enhance computational efficiency. Numerical experiments on a toy network and the well-known Sioux-Falls network demonstrate the effectiveness of the proposed two-dimensional AVDL configuration approach and the efficiency of the bi-level solution method. This study contributes to the field by extending AVDL configuration to two dimensions, providing a comprehensive framework for future urban network design in mixed traffic environments.

Suggested Citation

  • Chen, Xiangdong & Zhang, Fang & Guan, Hao & Meng, Qiang, 2025. "Two-dimensional lane configuration design approach for Autonomous Vehicle Dedicated Lanes in urban networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005295
    DOI: 10.1016/j.tre.2024.103938
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524005295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jing & Zhang, Xiaoning & Wang, Hua & Zhang, Michael, 2019. "Optimal parking supply in bi-modal transportation network considering transit scale economies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 207-229.
    2. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    3. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    4. Wang, Jian & Peeta, Srinivas & He, Xiaozheng, 2019. "Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 139-168.
    5. Ngoduy, Dong & Nguyen, Cuong H.P. & Lee, Seunghyeon & Zheng, Zuduo & Lo, Hong K., 2024. "A dynamic system optimal dedicated lane design for connected and autonomous vehicles in a heterogeneous urban transport network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    6. Fukushima, Masao, 1984. "A modified Frank-Wolfe algorithm for solving the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 169-177, April.
    7. Wang, Zhimian & An, Kun & Correia, Gonçalo & Ma, Wanjing, 2024. "Real-time scheduling and routing of shared autonomous vehicles considering platooning in intermittent segregated lanes and priority at intersections in urban corridors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    8. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
    9. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    10. Rey, David & Levin, Michael W., 2019. "Blue phase: Optimal network traffic control for legacy and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 105-129.
    11. Wang, Ting & Li, Yao & Jia, Bin & Long, Jiancheng, 2024. "An autonomous vehicle exclusive lane design problem under the mixed autonomy traffic environment: Model formulation and large-scale algorithm design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    12. Li, Tongfei & Cao, Yaning & Xu, Min & Sun, Huijun, 2023. "Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    13. Kimber, R. M. & McDonald, M. & Hounsell, N., 1985. "Passenger car units in saturation flows: Concept, definition, derivation," Transportation Research Part B: Methodological, Elsevier, vol. 19(1), pages 39-61, February.
    14. Wu, Wei & Zhang, Fangni & Liu, Wei & Lodewijks, Gabriel, 2020. "Modelling the traffic in a mixed network with autonomous-driving expressways and non-autonomous local streets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    2. Li, Tongfei & Cao, Yaning & Xu, Min & Sun, Huijun, 2023. "Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Wang, Yi & Li, Le & Wu, Yunxia & Yao, Zhihong & Jiang, Yangsheng, 2024. "Efficiency and fuel consumption of mixed traffic flow with lane management of CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
    4. Chen, Yujia & Dong, Changyin & Lyu, Keyun & Shi, Xiaomeng & Han, Gengyue & Wang, Hao, 2024. "A review of car-following and lane-changing models under heterogeneous environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
    5. Liu, Peng & Xu, Shu-Xian & Ong, Ghim Ping & Tian, Qiong & Ma, Shoufeng, 2021. "Effect of autonomous vehicles on travel and urban characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 128-148.
    6. Chen, Shukai & Wang, Hua & Xiao, Ling & Meng, Qiang, 2022. "Random capacity for a single lane with mixed autonomous and human-driven vehicles: Bounds, mean gaps and probability distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    7. Wang, Zhimian & An, Kun & Correia, Gonçalo & Ma, Wanjing, 2024. "Real-time scheduling and routing of shared autonomous vehicles considering platooning in intermittent segregated lanes and priority at intersections in urban corridors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    8. Li, Tongfei & Qian, Zhen & Fan, Bo & Xu, Min & Sun, Huijun & Chen, Yanyan, 2024. "Integrated optimal planning of multi-type lanes and intersections in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    9. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    10. Zarbakhshnia, Navid & Ma, Zhenliang, 2024. "Critical success factors for the adoption of AVs in sustainable urban transportation," Transport Policy, Elsevier, vol. 156(C), pages 62-76.
    11. Zhao, Taiyi & Sun, Zhiguo & Wang, Jingquan & Tang, Yuchun & Varga, Liz & Skibniewski, Mirosław J., 2025. "Resilience-based transportation system planning optimization through dedicated autonomous vehicle lanes configuration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    12. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    13. Zhou, Wenhan & Weng, Jiancheng & Li, Tongfei & Fan, Bo & Bian, Yang, 2024. "Modeling the road network capacity in a mixed HV and CAV environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    14. Jansuwan, Sarawut & Liu, Zhaocai & Song, Ziqi & Chen, Anthony, 2021. "An evaluation framework of automated electric transportation system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    15. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    16. Wu, Xuelian & Postorino, Maria Nadia & Mantecchini, Luca, 2024. "Impacts of connected autonomous vehicle platoon breakdown on highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    17. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    18. Zhang, Xiang & Sun, Haojie & Pei, Xiaoyang & Guan, Linghui & Wang, Zihao, 2024. "Evolution of technology investment and development of robotaxi services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    19. Yao, Zhihong & Li, Le & Liao, Wenbin & Wang, Yi & Wu, Yunxia, 2024. "Optimal lane management policy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    20. Chowdhury, Tufayel & Vaughan, James & Roorda, Matthew J., 2024. "Modeling impacts of freight automated vehicles in the Greater Toronto and Hamilton Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.