IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v175y2023ics1366554523001618.html
   My bibliography  Save this article

Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs

Author

Listed:
  • Li, Tongfei
  • Cao, Yaning
  • Xu, Min
  • Sun, Huijun

Abstract

It is widely recognized that human-driven vehicles (HVs) and connected and autonomous vehicles (CAVs) are expected to coexist and share the urban traffic infrastructure in the transportation network for a long time. To fully utilizes CAVs’ potential to reduce congestion in the transitional period, this study proposes and addresses the intersection design and signal setting problem in the transportation network with mixed HVs and CAVs. Due to the difference in terms of communication technology and autonomous driving technology for HVs and CAVs, three types of intersections have been proposed to amplify the efficiency-improvement benefit from CAVs by separating CAVs from HVs in a temporal or local-spatial dimension: the conventional signalized intersection, the novel signalized intersection with a dedicated CAV phase and dedicated CAV approaches, and the intelligent signal-free intersection. The problem is to determine the spatial layout of different types of intersections in the transportation network, the cycle time, and green time duration for each phase of signalized intersections that minimize the total travel cost, in which the route choice behavior of heterogeneous travelers has been respected based on the user equilibrium principle. A mixed-integer nonlinear programming model is developed to formulate the proposed intersection design and signal setting problem based on the link-node modeling method, in which the path enumeration is avoided. Then, by employing various linearization techniques (e.g., disjunctive constraints, logarithmic transformation, piecewise linearization with logarithmic-sized binary variables and constraints, outer-approximation technique), the proposed model can be further transformed into a relaxed sub-problem in the form of mixed-integer linear programming. A globally optimal solution algorithm embedding with solving a sequence of relaxed sub-problems and nonlinear mixed complementarity problems is proposed to converge to a global optimum. The results of numerical experiments illustrate that the proposed methodology can significantly improve the performance of the whole network. Moreover, it consistently outperforms the optimization model considering only conventional signalized intersections under various CAV market penetration rates.

Suggested Citation

  • Li, Tongfei & Cao, Yaning & Xu, Min & Sun, Huijun, 2023. "Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:transe:v:175:y:2023:i:c:s1366554523001618
    DOI: 10.1016/j.tre.2023.103173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523001618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cipriani, Ernesto & Fusco, Gaetano, 2004. "Combined signal setting design and traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 155(3), pages 569-583, June.
    2. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    3. Ennio Cascetta & Mariano Gallo & Bruno Montella, 2006. "Models and algorithms for the optimization of signal settings on urban networks with stochastic assignment models," Annals of Operations Research, Springer, vol. 144(1), pages 301-328, April.
    4. Rey, David & Levin, Michael W., 2019. "Blue phase: Optimal network traffic control for legacy and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 105-129.
    5. Li, Tongfei & Sun, Huijun & Wu, Jianjun & Ge, Ying-en, 2017. "Optimal toll of new highway in the equilibrium framework of heterogeneous households' residential location choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 123-137.
    6. Lu, Gongyuan & Shen, Zili & Liu, Xiaobo & Nie, Yu (Marco) & Xiong, Zhiqiang, 2022. "Are autonomous vehicles better off without signals at intersections? A comparative computational study," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 26-46.
    7. Wang, Jian & Peeta, Srinivas & He, Xiaozheng, 2019. "Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 139-168.
    8. Sang Nguyen & Clermont Dupuis, 1984. "An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs," Transportation Science, INFORMS, vol. 18(2), pages 185-202, May.
    9. Cheng Cheng & Yuchuan Du & Lijun Sun & Yuxiong Ji, 2016. "Review on Theoretical Delay Estimation Model for Signalized Intersections," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 479-499, July.
    10. Chen, Zhibin & He, Fang & Yin, Yafeng & Du, Yuchuan, 2017. "Optimal design of autonomous vehicle zones in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 44-61.
    11. Yu, Chunhui & Feng, Yiheng & Liu, Henry X. & Ma, Wanjing & Yang, Xiaoguang, 2018. "Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 89-112.
    12. Chen, Shukai & Wang, Hua & Xiao, Ling & Meng, Qiang, 2022. "Random capacity for a single lane with mixed autonomous and human-driven vehicles: Bounds, mean gaps and probability distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    13. Li, Tongfei & Xu, Min & Sun, Huijun & Xiong, Jie & Dou, Xueping, 2023. "Stochastic ridesharing equilibrium problem with compensation optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    14. Kimber, R. M. & McDonald, M. & Hounsell, N., 1985. "Passenger car units in saturation flows: Concept, definition, derivation," Transportation Research Part B: Methodological, Elsevier, vol. 19(1), pages 39-61, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    2. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    3. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    4. Wang, Hua & Meng, Qiang & Chen, Shukai & Zhang, Xiaoning, 2021. "Competitive and cooperative behaviour analysis of connected and autonomous vehicles across unsignalised intersections: A game-theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 322-346.
    5. Li, Tongfei & Xu, Min & Sun, Huijun & Xiong, Jie & Dou, Xueping, 2023. "Stochastic ridesharing equilibrium problem with compensation optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    6. Manivasakan, Hesavar & Kalra, Riddhi & O'Hern, Steve & Fang, Yihai & Xi, Yinfei & Zheng, Nan, 2021. "Infrastructure requirement for autonomous vehicle integration for future urban and suburban roads – Current practice and a case study of Melbourne, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 36-53.
    7. Zhaoming Zhou & Jianbo Yuan & Shengmin Zhou & Qiong Long & Jianrong Cai & Lei Zhang, 2023. "Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    8. Fusco, G. & Bielli, M. & Cipriani, E. & Gori, S. & Nigro, M., 2013. "Signal settings synchronization and dynamic traffic modelling," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    9. Mo, Dong & Chen, Xiqun (Michael) & Zhang, Junlin, 2022. "Modeling and Managing Mixed On-Demand Ride Services of Human-Driven Vehicles and Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 80-119.
    10. Les Foulds & Daniel Duarte & Hugo Nascimento & Humberto Longo & Bryon Hall, 2014. "Turning restriction design in traffic networks with a budget constraint," Journal of Global Optimization, Springer, vol. 60(2), pages 351-371, October.
    11. Zhang, Fang & Lu, Jian & Hu, Xiaojian, 2022. "Integrated path controlling and subsidy scheme for mobility and environmental management in automated transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    12. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    13. Li, Qing & Liao, Feixiong, 2020. "Incorporating vehicle self-relocations and traveler activity chains in a bi-level model of optimal deployment of shared autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 151-175.
    14. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    15. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    16. Xuedong Hua & YinHai Wang & Weijie Yu & Wenbo Zhu & Wei Wang, 2019. "Control Strategy Optimization for Two-Lane Highway Lane-Closure Work Zones," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    17. Xiaofei Ye & Min Li & Zhongzhen Yang & Xingchen Yan & Jun Chen, 2020. "A Dynamic Adjustment Model of Cruising Taxicab Fleet Size Combined the Operating and Flied Survey Data," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    18. García-Chan, N. & Alvarez-Vázquez, L.J. & Martínez, A. & Vázquez-Méndez, M.E., 2021. "Designing an ecologically optimized road corridor surrounding restricted urban areas: A mathematical methodology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 745-759.
    19. Wang, Jian & Lu, Lili & Peeta, Srinivas, 2022. "Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 88-118.
    20. Lingyu Zhang & Li Wang & Lili Zhang & Xiao Zhang & Dehui Sun, 2023. "An RSU Deployment Scheme for Vehicle-Infrastructure Cooperated Autonomous Driving," Sustainability, MDPI, vol. 15(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:175:y:2023:i:c:s1366554523001618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.