IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v192y2024ics1366554524003600.html
   My bibliography  Save this article

Planning two-dimensional trajectories for modular bus enroute docking

Author

Listed:
  • Han, Yu
  • Ma, Xiaolei
  • Yu, Bin
  • Li, Qianwen
  • Zhang, Ronghui
  • Li, Xiaopeng

Abstract

Modular buses (MBs), which can physically dock and separate, offer enhanced flexibility and potential cost savings in urban transportation. Despite advances in scheduling, trajectory planning for the docking process of MBs is less developed. This paper addresses the two-dimensional trajectory planning for MB docking. We introduce a hierarchical docking planning model based on Nonlinear Model Predictive Control (NMPC). The upper-level model optimizes docking time and speed, while the lower-level dynamically updates trajectories. Our models integrate Frenet and Cartesian coordinates with a precise obstacle avoidance model to ensure safety and smoothness under diverse traffic conditions. We employ segmented Lagrange interpolation for discretizing the continuous NMPC model, enhancing planning accuracy with fewer points and improving solving efficiency. Additionally, a multi-task network adaptively adjusts discretization orders based on environmental data. Extensive testing demonstrates our method’s superior accuracy and efficiency in real-time performance, offering marked improvements in safety and operational smoothness compared to existing approaches.

Suggested Citation

  • Han, Yu & Ma, Xiaolei & Yu, Bin & Li, Qianwen & Zhang, Ronghui & Li, Xiaopeng, 2024. "Planning two-dimensional trajectories for modular bus enroute docking," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003600
    DOI: 10.1016/j.tre.2024.103769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524003600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.