IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v192y2024ics1366554524003600.html
   My bibliography  Save this article

Planning two-dimensional trajectories for modular bus enroute docking

Author

Listed:
  • Han, Yu
  • Ma, Xiaolei
  • Yu, Bin
  • Li, Qianwen
  • Zhang, Ronghui
  • Li, Xiaopeng

Abstract

Modular buses (MBs), which can physically dock and separate, offer enhanced flexibility and potential cost savings in urban transportation. Despite advances in scheduling, trajectory planning for the docking process of MBs is less developed. This paper addresses the two-dimensional trajectory planning for MB docking. We introduce a hierarchical docking planning model based on Nonlinear Model Predictive Control (NMPC). The upper-level model optimizes docking time and speed, while the lower-level dynamically updates trajectories. Our models integrate Frenet and Cartesian coordinates with a precise obstacle avoidance model to ensure safety and smoothness under diverse traffic conditions. We employ segmented Lagrange interpolation for discretizing the continuous NMPC model, enhancing planning accuracy with fewer points and improving solving efficiency. Additionally, a multi-task network adaptively adjusts discretization orders based on environmental data. Extensive testing demonstrates our method’s superior accuracy and efficiency in real-time performance, offering marked improvements in safety and operational smoothness compared to existing approaches.

Suggested Citation

  • Han, Yu & Ma, Xiaolei & Yu, Bin & Li, Qianwen & Zhang, Ronghui & Li, Xiaopeng, 2024. "Planning two-dimensional trajectories for modular bus enroute docking," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003600
    DOI: 10.1016/j.tre.2024.103769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524003600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pei, Mingyang & Lin, Peiqun & Du, Jun & Li, Xiaopeng & Chen, Zhiwei, 2021. "Vehicle dispatching in modular transit networks: A mixed-integer nonlinear programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    2. Li, Qianwen & Li, Xiaopeng, 2022. "Trajectory planning for autonomous modular vehicle docking and autonomous vehicle platooning operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    3. Qiu, Jiahua & Du, Lili, 2023. "Cooperative trajectory control for synchronizing the movement of two connected and autonomous vehicles separated in a mixed traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    4. Xiaohan Liu & Patrick Plötz & Sonia Yeh & Zhengke Liu & Xiaoyue Cathy Liu & Xiaolei Ma, 2024. "Transforming public transport depots into profitable energy hubs," Nature Energy, Nature, vol. 9(10), pages 1206-1219, October.
    5. Chen, Zhiwei & Li, Xiaopeng, 2021. "Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Li, Qianwen & Li, Xiaopeng, 2023. "Trajectory optimization for autonomous modular vehicle or platooned autonomous vehicle split operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    2. Jiang, Yangsheng & Huangfu, Junjie & Xiao, Guosheng & Zhang, Yongxiang & Yao, Zhihong, 2025. "Energy-efficient trajectory design of connected automated vehicles platoon: A unified modeling approach using space-time-speed grid networks," Energy, Elsevier, vol. 314(C).
    3. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    4. Zou, Kaijie & Zhang, Ke & Li, Meng, 2024. "Operational design for modular electrified transit in corridor areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    5. Tian, Li-Jun & Tang, Zhe-Yi & Liu, Peng & Huang, Hai-Jun, 2024. "Parking policy design for managing morning commute with dedicated autonomous vehicle lane," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    6. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    7. Yao, Handong & Li, Xiaopeng & Li, Qianwen & Yu, Chenyang, 2024. "Safety aware neural network for connected and automated vehicle operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    8. Wu, Xinyu & Xiao, Xinping, 2024. "An improved stochastic car-following model considering the complete state information of multiple preceding vehicles under connected vehicles environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 644(C).
    9. Zhang, Zhe & Yu, Qing & Gao, Kun & He, Hong-Di & Liu, Yang & Huang, Haichao, 2025. "Carbon emission reduction benefits of ride-hailing vehicle electrification considering energy structure," Applied Energy, Elsevier, vol. 377(PA).
    10. Chen, Shukai & Wang, Hua & Meng, Qiang, 2023. "Cost allocation of cooperative autonomous truck platooning: Efficiency and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 119-141.
    11. Chen, Bingkun & Chen, Zhuo & Liu, Xiaoyue Cathy & Zheng, Nan & Xiao, Qijie, 2024. "Measuring the effectiveness of incorporating mobile charging services into urban electric vehicle charging network: An agent-based approach," Renewable Energy, Elsevier, vol. 234(C).
    12. Zhang, Wei & Liu, Jiahui & Wang, Kai & Wang, Liang, 2024. "Routing and charging optimization for electric bus operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    13. Li, Yanhao & Li, Xin & Zhang, Chengdong & Zhang, Yanxi, 2024. "Optimizing the photovoltaic-assisted electric bus network with rooftop energy supply," Renewable Energy, Elsevier, vol. 234(C).
    14. Ande Chang & Yuan Cong & Chunguang Wang & Yiming Bie, 2024. "Optimal Vehicle Scheduling and Charging Infrastructure Planning for Autonomous Modular Transit System," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
    15. Liu, Zhengke & Ma, Xiaolei & Zhuo, Siyu & Liu, Xiaohan, 2024. "Optimizing shared charging services at sustainable bus charging hubs: A queue theory integration approach," Renewable Energy, Elsevier, vol. 237(PC).
    16. Liu, Yuhao & Chen, Zhibin & Wang, Xiaolei, 2024. "Alleviating bus bunching via modular vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    17. Chen, Shukai & Wang, Hua & Xiao, Ling & Meng, Qiang, 2022. "Random capacity for a single lane with mixed autonomous and human-driven vehicles: Bounds, mean gaps and probability distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    18. Wang, Zhimian & An, Kun & Correia, Gonçalo & Ma, Wanjing, 2024. "Real-time scheduling and routing of shared autonomous vehicles considering platooning in intermittent segregated lanes and priority at intersections in urban corridors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    19. Hoseon Kim & Jieun Ko & Cheol Oh & Seoungbum Kim, 2024. "Evaluation of Autonomous Driving Safety by Operational Design Domains (ODD) in Mixed Traffic," Sustainability, MDPI, vol. 16(22), pages 1-18, November.
    20. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2022. "Optimal deployment of autonomous buses into a transit service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.