IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v98y2025ics0038012125000047.html
   My bibliography  Save this article

Mathematical programming in public bus transit design and operations: Emerging technologies and sustainability – A review

Author

Listed:
  • Mahmoudi, Reza
  • Saidi, Saeid
  • Emrouznejad, Ali

Abstract

Public bus transit service (PBTS) is recognized as a highly effective mode of transportation, offering accessibility, affordability, and adaptability that contribute to its critical role in transportation networks. The extensive literature on PBTS encompasses various aspects, with mathematical programming emerging as a widely employed methodology to tackle the public bus transit network design and operations planning problem (PBTNDP&OPP). In this paper, first, we employ the critical path method (CPM) to visually map the development of existing literature on the application of mathematical programming in PBTND&OPP by focusing on manuscripts published in top-tier journals. The objective is to identify key sub-problems extensively studied in the literature and recently emerging topics. Then, we conduct a comprehensive review of recent applications of mathematical programming in PBTND&OPP, encompassing sustainable and green practices, as well as emerging transportation technologies and modes within PBTS. These two sub-problems have been identified as recently emerged and hot topics in the literature of mathematical programming and PBTND&OPP, based on the provided CPM in the first step. Selected papers for each sub-problem are examined, providing insights into problem formulation, objective functions, decision variables, demand patterns, network structures, and key findings. Based on the literature review, we systematically identify research gaps in each sub-problem and offer directions and suggestions for future studies. While there is a considerable body of literature that has applied mathematical programming to investigate these two emerging topics, our review highlights that the existing literature is still in the early stages of development. Hence, numerous problems relating to these topics remain ripe for exploration through mathematical programming. Examining the effects of sustainable development policies or the introduction of emerging technologies on the reliability and long-term performance of PBTSs represents a significant gap in current research. On the methodological side, the main gap in the literature is the absence of efficient hybrid approaches, where mathematical programming is integrated with other approaches to provide more robust results and to capture the dynamics of PBTSs. Our work aims to advance knowledge in the field of PBTND&OPP and inspire further research endeavors.

Suggested Citation

  • Mahmoudi, Reza & Saidi, Saeid & Emrouznejad, Ali, 2025. "Mathematical programming in public bus transit design and operations: Emerging technologies and sustainability – A review," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
  • Handle: RePEc:eee:soceps:v:98:y:2025:i:c:s0038012125000047
    DOI: 10.1016/j.seps.2025.102155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012125000047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2025.102155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    2. Daimi, Sarra & Rebai, Sonia, 2023. "Sustainability performance assessment of Tunisian public transport companies: AHP and ANP approaches," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    3. Xueting He & Zhiyuan Yang & Tianyi Fan & Jiajing Gao & Lu Zhen & Junyan Lyu, 2024. "Branch and price algorithm for route optimization on customized bus service," Annals of Operations Research, Springer, vol. 335(1), pages 205-236, April.
    4. Daria Maltseva & Vladimir Batagelj, 2019. "Social network analysis as a field of invasions: bibliographic approach to study SNA development," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1085-1128, November.
    5. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    6. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    7. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    8. Song, Yao-yao & Li, Jing-jing & Wang, Jin-li & Yang, Guo-liang & Chen, Zhenling, 2022. "Eco-efficiency of Chinese transportation industry: A DEA approach with non-discretionary input," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    9. Pei, Mingyang & Lin, Peiqun & Du, Jun & Li, Xiaopeng & Chen, Zhiwei, 2021. "Vehicle dispatching in modular transit networks: A mixed-integer nonlinear programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    10. Lu Zhen & Xueting He & Shuaian Wang & Jingwen Wu & Kai Liu, 2023. "Vehicle routing for customized on-demand bus services," IISE Transactions, Taylor & Francis Journals, vol. 55(12), pages 1277-1294, December.
    11. Simic, Vladimir & Gokasar, Ilgin & Deveci, Muhammet & Karakurt, Ahmet, 2022. "An integrated CRITIC and MABAC based type-2 neutrosophic model for public transportation pricing system selection," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    12. Luo, Xiaoling & Fan, Wenbo, 2023. "Joint design of electric bus transit service and wireless charging facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    13. Oren E. Nahum & Yuval Hadas, 2020. "Multi-Objective Optimal Allocation of Wireless Bus Charging Stations Considering Costs and the Environmental Impact," Sustainability, MDPI, vol. 12(6), pages 1-20, March.
    14. Guan, Yunlin & Xiang, Wang & Wang, Yun & Yan, Xuedong & Zhao, Yi, 2023. "Bi-level optimization for customized bus routing serving passengers with multiple-trips based on state–space–time network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    15. Pternea, Moschoula & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2015. "Sustainable urban transit network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 276-291.
    16. Christina Iliopoulou & Konstantinos Kepaptsoglou & Eleni Vlahogianni, 2019. "Metaheuristics for the transit route network design problem: a review and comparative analysis," Public Transport, Springer, vol. 11(3), pages 487-521, October.
    17. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    18. Javier Duran & Lorena Pradenas & Victor Parada, 2019. "Transit network design with pollution minimization," Public Transport, Springer, vol. 11(1), pages 189-210, June.
    19. Mustafa Hamurcu & Tamer Eren, 2020. "Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    20. Antunes, Jorge & Tan, Yong & Wanke, Peter & Jabbour, Charbel Jose Chiappetta, 2023. "Impact of R&D and innovation in Chinese road transportation sustainability performance: A novel trigonometric envelopment analysis for ideal solutions (TEA-IS)," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    21. Bálint Csonka, 2021. "Optimization of Static and Dynamic Charging Infrastructure for Electric Buses," Energies, MDPI, vol. 14(12), pages 1-18, June.
    22. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    23. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    24. Mohammad Ansari Esfeh & S. C. Wirasinghe & Saeid Saidi & Lina Kattan, 2021. "Waiting time and headway modelling for urban transit systems – a critical review and proposed approach," Transport Reviews, Taylor & Francis Journals, vol. 41(2), pages 141-163, March.
    25. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    26. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2022. "Optimal deployment of autonomous buses into a transit service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    27. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    28. Wenxiang Li & Ye Li & Haopeng Deng & Lei Bao, 2018. "Planning of Electric Public Transport System under Battery Swap Mode," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    29. Odeck, James, 2006. "Congestion, ownership, region of operation, and scale: Their impact on bus operator performance in Norway," Socio-Economic Planning Sciences, Elsevier, vol. 40(1), pages 52-69, March.
    30. Yuhuan Liu & Enjian Yao & Muyang Lu & Ling Yuan, 2019. "Regional Electric Bus Driving Plan Optimization Algorithm considering Charging Time Window," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-9, October.
    31. Duran-Micco, Javier & Vermeir, Evert & Vansteenwegen, Pieter, 2020. "Considering emissions in the transit network design and frequency setting problem with a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 282(2), pages 580-592.
    32. Venkatesh, Anand & Kushwaha, Shivam, 2018. "Short and long-run cost efficiency in Indian public bus companies using Data Envelopment Analysis," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 29-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunhyung Yoo & Jinwoo Brian Lee & Hoon Han, 2023. "A Reinforcement Learning approach for bus network design and frequency setting optimisation," Public Transport, Springer, vol. 15(2), pages 503-534, June.
    2. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    3. Durán-Micco, Javier & Vansteenwegen, Pieter, 2022. "Transit network design considering link capacities," Transport Policy, Elsevier, vol. 127(C), pages 148-157.
    4. Grolle, Jorik & Donners, Barth & Annema, Jan Anne & Duinkerken, Mark & Cats, Oded, 2024. "Service design and frequency setting for the European high-speed rail network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    5. Christina Iliopoulou & Konstantinos Kepaptsoglou & Eleni Vlahogianni, 2019. "Metaheuristics for the transit route network design problem: a review and comparative analysis," Public Transport, Springer, vol. 11(3), pages 487-521, October.
    6. Cervantes-Sanmiguel, K.I. & Chavez-Hernandez, M.V. & Ibarra-Rojas, O.J., 2023. "Analyzing the trade-off between minimizing travel times and reducing monetary costs for users in the transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 142-161.
    7. Liu, Zhongshan & Yu, Bin & Zhang, Li & Sun, Yuxuan, 2025. "Resilience enhancement of multi-modal public transportation system via electric bus network redesign," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    8. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    9. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    10. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. Zou, Kaijie & Zhang, Ke & Li, Meng, 2024. "Operational design for modular electrified transit in corridor areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    12. Philipp Heyken Soares, 2021. "Zone-based public transport route optimisation in an urban network," Public Transport, Springer, vol. 13(1), pages 197-231, March.
    13. Guo-Ling Jia & Rong-Guo Ma & Zhi-Hua Hu, 2019. "Urban Transit Network Properties Evaluation and Optimization Based on Complex Network Theory," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    14. Fan, Wenbo & Gu, Weihua & Xu, Meng, 2024. "Optimal design of ride-pooling as on-demand feeder services," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    15. Iliopoulou, Christina & Makridis, Michail A., 2023. "Critical multi-link disruption identification for public transport networks: A multi-objective optimization framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    16. Evert Vermeir & Javier Durán-Micco & Pieter Vansteenwegen, 2022. "The grid based approach, a fast local evaluation technique for line planning," 4OR, Springer, vol. 20(4), pages 603-635, December.
    17. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    18. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    19. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    20. Yiduo Huang & Zuojun Max Shen, 2021. "Optimizing timetable and network reopen plans for public transportation networks during a COVID19-like pandemic," Papers 2109.03940, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:98:y:2025:i:c:s0038012125000047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.