IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v81y2015ip1p1-17.html
   My bibliography  Save this article

Inferring the route-use patterns of metro passengers based only on travel-time data within a Bayesian framework using a reversible-jump Markov chain Monte Carlo (MCMC) simulation

Author

Listed:
  • Lee, Minseo
  • Sohn, Keemin

Abstract

The passenger share and the average travel time for multiple routes connecting an origin–destination pair on a metro network has been examined based on a known number of used routes. Determining how many routes were used based only on travel times from smart-card data is a difficult task, even though the automatic fare collection system can provide a massive amount of travel data. The present study proposes a robust approach to incorporate the number of used routes as an unknown parameter into a Bayesian framework based on a reversible-jump Markov chain Monte Carlo (MCMC) algorithm. Other route-use patterns such as the passenger share and the mean and variance of route travel times were also estimated. The performance of the present approach was compared with the existing method, which depends on the Bayesian information criterion (BIC). The present approach showed better performance in reproducing the observed number of routes used, and also provided greater flexibility in recognizing route-use patterns through the marginal posterior distribution of other unknown parameters.

Suggested Citation

  • Lee, Minseo & Sohn, Keemin, 2015. "Inferring the route-use patterns of metro passengers based only on travel-time data within a Bayesian framework using a reversible-jump Markov chain Monte Carlo (MCMC) simulation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 1-17.
  • Handle: RePEc:eee:transb:v:81:y:2015:i:p1:p:1-17
    DOI: 10.1016/j.trb.2015.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515001836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    2. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    3. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    4. Jørund Gåsemyr, 2003. "On an adaptive version of the Metropolis–Hastings algorithm with independent proposal distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 159-173, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Wencheng & Zhang, Yue & Kou, Xingyi & Yin, Dezhi & Mi, Rongwei & Li, Linqing, 2020. "Railway dangerous goods transportation system risk analysis: An Interpretive Structural Modeling and Bayesian Network combining approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Eun Hak Lee & Inmook Lee & Shin-Hyung Cho & Seung-Young Kho & Dong-Kyu Kim, 2019. "A Travel Behavior-Based Skip-Stop Strategy Considering Train Choice Behaviors Based on Smartcard Data," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    3. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Hong En Tan & De Wen Soh & Yong Sheng Soh & Muhamad Azfar Ramli, 2021. "Derivation of train arrival timings through correlations from individual passenger farecard data," Transportation, Springer, vol. 48(6), pages 3181-3205, December.
    5. Wu, Jianjun & Qu, Yunchao & Sun, Huijun & Yin, Haodong & Yan, Xiaoyong & Zhao, Jiandong, 2019. "Data-driven model for passenger route choice in urban metro network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 787-798.
    6. Shi, Zhuangbin & Shen, Wei & Xu, Guangming & Long, Sihui & Liu, Yang, 2025. "Utilizing a data-driven methodology to resolve the passenger-to-train assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
    7. Han, Gain & Sohn, Keemin, 2016. "Activity imputation for trip-chains elicited from smart-card data using a continuous hidden Markov model," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 121-135.
    8. Taoyuan Yang & Peng Zhao & Xiangming Yao, 2020. "A Method to Estimate URT Passenger Spatial-Temporal Trajectory with Smart Card Data and Train Schedules," Sustainability, MDPI, vol. 12(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Gain & Sohn, Keemin, 2016. "Activity imputation for trip-chains elicited from smart-card data using a continuous hidden Markov model," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 121-135.
    2. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    3. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    4. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    5. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    6. Sik-Yum Lee, 2006. "Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 71(3), pages 541-564, September.
    7. Fisher, Mark & Jensen, Mark J., 2022. "Bayesian nonparametric learning of how skill is distributed across the mutual fund industry," Journal of Econometrics, Elsevier, vol. 230(1), pages 131-153.
    8. Ingvardson, Jesper Bláfoss & Raveau, Sebastián & Soza-Parra, Jaime, 2025. "Inertia and shock effects in public transport: The case of metro line 6 in Santiago using smart card data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    9. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    10. Aldo M. Garay & Francyelle L. Medina & Suelem Torres de Freitas & Víctor H. Lachos, 2024. "Bayesian analysis of linear regression models with autoregressive symmetrical errors and incomplete data," Statistical Papers, Springer, vol. 65(9), pages 5649-5690, December.
    11. N. T. Longford & Pierpaolo D'Urso, 2011. "Mixture models with an improper component," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2511-2521, January.
    12. Ungolo, Francesco & Kleinow, Torsten & Macdonald, Angus S., 2020. "A hierarchical model for the joint mortality analysis of pension scheme data with missing covariates," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 68-84.
    13. Pieroni, Caio & Giannotti, Mariana & Alves, Bianca B. & Arbex, Renato, 2021. "Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city," Journal of Transport Geography, Elsevier, vol. 96(C).
    14. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    15. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    16. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    17. Hou, Yanxi & Li, Jiahong & Gao, Guangyuan, 2025. "Insurance loss modeling with gradient tree-boosted mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 121(C), pages 45-62.
    18. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    19. Wu, C.C. & Lee, Jack C., 2007. "Estimation of a utility-based asset pricing model using normal mixture GARCH(1,1)," Economic Modelling, Elsevier, vol. 24(2), pages 329-349, March.
    20. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:81:y:2015:i:p1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.