IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v197y2025ics136655452500078x.html
   My bibliography  Save this article

Utilizing a data-driven methodology to resolve the passenger-to-train assignment problem

Author

Listed:
  • Shi, Zhuangbin
  • Shen, Wei
  • Xu, Guangming
  • Long, Sihui
  • Liu, Yang

Abstract

Understanding the passenger distribution within the metro system is a prerequisite for metro network planning and operation. However, as automatic fare collection (AFC) data records only entry and exit information, directly obtaining passenger distribution through AFC data and established timetables remains challenging. Although many studies have explored passenger distribution in metro systems based on accurate timetable inputs, parameter collection and calibration are challenging due to the spatiotemporal dynamics of both passenger demand and headway. This study proposes a data-driven passenger-to-train assignment model (PTAM). The posterior probability of passengers boarding the train is computed using a two-stage Gaussian mixture model (GMM). This method does not require precise timetable inputs, and both the initial parameter collection and final estimation processes are automated, eliminating the need for manual calibration. Using the Nanjing metro as a case study, the effectiveness of the PTAM is demonstrated. Additionally, the study computes in-vehicle passengers, left-behind passengers, and passengers’ willingness to pay (WTP) using PTAM. The results demonstrate significant differences in crowding level and left-behind at different stations on the same line. During the evening peak, passengers bear about 50% of welfare costs. The findings can provide managers with a basis for passenger flow organization and guidance for passenger’s travel decision.

Suggested Citation

  • Shi, Zhuangbin & Shen, Wei & Xu, Guangming & Long, Sihui & Liu, Yang, 2025. "Utilizing a data-driven methodology to resolve the passenger-to-train assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:transe:v:197:y:2025:i:c:s136655452500078x
    DOI: 10.1016/j.tre.2025.104037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655452500078X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:197:y:2025:i:c:s136655452500078x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.