IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v57y2013icp342-360.html
   My bibliography  Save this article

Modelling route choice behaviour in a tolled road network with a time surplus maximisation bi-objective user equilibrium model

Author

Listed:
  • Wang, Judith Y.T.
  • Ehrgott, Matthias

Abstract

In this paper, we propose a novel approach to model route choice behaviour in a tolled road network with a bi-objective approach, assuming that all users have two objectives: (1) minimise travel time; and (2) minimise toll cost. We assume further that users have different preferences in the sense that for any given path with a specific toll, there is a limit on the time that an individual would be willing to spend. Different users can have different preferences represented by this indifference curve between toll and time. Time surplus is defined as the maximum time minus the actual time. Given a set of paths, the one with the highest (or least negative) time surplus will be the preferred path for the individual. This will result in a bi-objective equilibrium solution satisfying the time surplus maximisation bi-objective user equilibrium (TSmaxBUE) condition. That is, for each O–D pair, all individuals are travelling on the path with the highest time surplus value among all the efficient paths between this O–D pair.

Suggested Citation

  • Wang, Judith Y.T. & Ehrgott, Matthias, 2013. "Modelling route choice behaviour in a tolled road network with a time surplus maximisation bi-objective user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 342-360.
  • Handle: RePEc:eee:transb:v:57:y:2013:i:c:p:342-360
    DOI: 10.1016/j.trb.2013.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151300101X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Steven A. Gabriel & David Bernstein, 1997. "The Traffic Equilibrium Problem with Nonadditive Path Costs," Transportation Science, INFORMS, vol. 31(4), pages 337-348, November.
    3. Judith Y. T. Wang & Andrea Raith & Matthias Ehrgott, 2010. "Tolling Analysis with Bi-objective Traffic Assignment," Lecture Notes in Economics and Mathematical Systems, in: Matthias Ehrgott & Boris Naujoks & Theodor J. Stewart & Jyrki Wallenius (ed.), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pages 117-129, Springer.
    4. Lam, Terence C. & Small, Kenneth A., 0. "The value of time and reliability: measurement from a value pricing experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 231-251, April.
    5. Jayakrishnan, R. & Tsai, Wei T. & Prashker, Joseph N. & Rajadhyaksha, Subodh, 1994. "A Faster Path-Based Algorithm for Traffic Assignment," University of California Transportation Center, Working Papers qt2hf4541x, University of California Transportation Center.
    6. Brownstone, David & Small, Kenneth A., 2005. "Valuing time and reliability: assessing the evidence from road pricing demonstrations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 279-293, May.
    7. Small, Kenneth A., 2001. "The Value of Pricing," University of California Transportation Center, Working Papers qt0rm449sx, University of California Transportation Center.
    8. Dial, Robert B., 1979. "A model and algorithm for multicriteria route-mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 311-316, December.
    9. Shlomo Bekhor & Moshe Ben-Akiva & M. Ramming, 2006. "Evaluation of choice set generation algorithms for route choice models," Annals of Operations Research, Springer, vol. 144(1), pages 235-247, April.
    10. Lo, Hong K. & Chen, Anthony, 2000. "Traffic equilibrium problem with route-specific costs: formulation and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 493-513, August.
    11. Igal Milchtaich, 2005. "Topological Conditions for Uniqueness of Equilibrium in Networks," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 225-244, February.
    12. Robert B. Dial, 1996. "Bicriterion Traffic Assignment: Basic Theory and Elementary Algorithms," Transportation Science, INFORMS, vol. 30(2), pages 93-111, May.
    13. Guo, Xiaolei & Yang, Hai, 2009. "User heterogeneity and bi-criteria system optimum," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 379-390, May.
    14. Liu, Henry X. & Recker, Will & Chen, Anthony, 2004. "Uncovering the contribution of travel time reliability to dynamic route choice using real-time loop data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 435-453, July.
    15. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    16. Oran Richman & Nahum Shimkin, 2007. "Topological Uniqueness of the Nash Equilibrium for Selfish Routing with Atomic Users," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 215-232, February.
    17. Chen, Linxi & Yang, Hai, 2012. "Managing congestion and emissions in road networks with tolls and rebates," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 933-948.
    18. Leurent, Fabien, 1993. "Cost versus time equilibrium over a network," European Journal of Operational Research, Elsevier, vol. 71(2), pages 205-221, December.
    19. Yang, Hai & Huang, Hai-Jun, 2004. "The multi-class, multi-criteria traffic network equilibrium and systems optimum problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 1-15, January.
    20. Dial, Robert B., 1997. "Bicriterion traffic assignment: Efficient algorithms plus examples," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 357-379, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaojing & Li, Feng & Jiang, Jiehui & Jia, Bin & Lim, Andrew & Wu, Jianjun, 2022. "Data-driven optimization: A flexible route pricing method for Non-Truck Operating Common Carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    2. Xu, Zhandong & Chen, Anthony & Liu, Xiaobo, 2023. "Time and toll trade-off with heterogeneous users: A continuous time surplus maximization bi-objective user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 31-58.
    3. Danczyk, Adam & Di, Xuan & Liu, Henry X. & Levinson, David M., 2017. "Unexpected versus expected network disruption: Effects on travel behavior," Transport Policy, Elsevier, vol. 57(C), pages 68-78.
    4. Wang, Guangchao & Jia, Ning & Ma, Shoufeng & Qi, Hang, 2014. "A rank-dependent bi-criterion equilibrium model for stochastic transportation environment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 511-529.
    5. Ehrgott, Matthias & Wang, Judith Y.T. & Watling, David P., 2015. "On multi-objective stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 704-717.
    6. Chi Xie & Xing Wu & Stephen Boyles, 2019. "Traffic equilibrium with a continuously distributed bound on travel weights: the rise of range anxiety and mental account," Annals of Operations Research, Springer, vol. 273(1), pages 279-310, February.
    7. Judith Y. T. Wang & Richard D. Connors, 2018. "Urban Growth, Transport Planning, Air Quality and Health: A Multi-Objective Spatial Analysis Framework for a Linear Monocentric City," Networks and Spatial Economics, Springer, vol. 18(4), pages 839-874, December.
    8. Andani, I Gusti Ayu & La Paix Puello, Lissy & Geurs, Karst, 2021. "Modelling effects of changes in travel time and costs of toll road usage on choices for residential location, route and travel mode across population segments in the Jakarta-Bandung region, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 81-102.
    9. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part I – Model formulations under alternative distributions and restrictions," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 166-181.
    10. Hadi Charkhgard & Martin Savelsbergh & Masoud Talebian, 2018. "Nondominated Nash points: application of biobjective mixed integer programming," 4OR, Springer, vol. 16(2), pages 151-171, June.
    11. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
    12. Cassiano A. Isler & Yesid Asaff & Marin Marinov, 2020. "Designing a Geo-Strategic Railway Freight Network in Brazil Using GIS," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    13. Ding, Hongxing & Yang, Hai & Xu, Hongli & Li, Ting, 2023. "Status quo-dependent user equilibrium model with adaptive value of time," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 77-90.
    14. Hongli Xu & Hai Yang & Jing Zhou & Yafeng Yin, 2017. "A Route Choice Model with Context-Dependent Value of Time," Transportation Science, INFORMS, vol. 51(2), pages 536-548, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.
    2. Xu, Zhandong & Chen, Anthony & Liu, Xiaobo, 2023. "Time and toll trade-off with heterogeneous users: A continuous time surplus maximization bi-objective user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 31-58.
    3. Ehrgott, Matthias & Wang, Judith Y.T. & Watling, David P., 2015. "On multi-objective stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 704-717.
    4. Wu, Wen-Xiang & Huang, Hai-Jun, 2014. "Finding anonymous tolls to realize target flow pattern in networks with continuously distributed value of time," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 31-46.
    5. Wang, Guangchao & Jia, Ning & Ma, Shoufeng & Qi, Hang, 2014. "A rank-dependent bi-criterion equilibrium model for stochastic transportation environment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 511-529.
    6. Hongli Xu & Hai Yang & Jing Zhou & Yafeng Yin, 2017. "A Route Choice Model with Context-Dependent Value of Time," Transportation Science, INFORMS, vol. 51(2), pages 536-548, May.
    7. Meng, Qiang & Liu, Zhiyuan & Wang, Shuaian, 2012. "Optimal distance tolls under congestion pricing and continuously distributed value of time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 937-957.
    8. Chi Xie & Xing Wu & Stephen Boyles, 2019. "Traffic equilibrium with a continuously distributed bound on travel weights: the rise of range anxiety and mental account," Annals of Operations Research, Springer, vol. 273(1), pages 279-310, February.
    9. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    10. Hong, Sung-Pil & Kim, Kyung min & Byeon, Geunyeong & Min, Yun-Hong, 2017. "A method to directly derive taste heterogeneity of travellers’ route choice in public transport from observed routes," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 41-52.
    11. O’Neill, Sam & Bagdasar, Ovidiu & Berry, Stuart & Popovici, Nicolae & Raja, Ramachandran, 2022. "Modelling equilibrium for a multi-criteria selfish routing network equilibrium flow problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 658-669.
    12. Dung-Ying Lin & Chi Xie, 2011. "The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate Objectives," Networks and Spatial Economics, Springer, vol. 11(4), pages 727-751, December.
    13. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
    14. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    15. Hongcheng Gan & Yang Bai, 2014. "The effect of travel time variability on route choice decision: a generalized linear mixed model based analysis," Transportation, Springer, vol. 41(2), pages 339-350, March.
    16. M. Rouhani, Omid, 2015. "Impact of Value of Time (VOT) on toll roads," MPRA Paper 65087, University Library of Munich, Germany.
    17. Kobayashi, Kiyoshi & Do, Myungsik, 2005. "The informational impacts of congestion tolls upon route traffic demands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 651-670.
    18. Perederieieva, Olga & Raith, Andrea & Schmidt, Marie, 2018. "Non-additive shortest path in the context of traffic assignment," European Journal of Operational Research, Elsevier, vol. 268(1), pages 325-338.
    19. Mengying Cui & David Levinson, 2021. "Shortest paths, travel costs, and traffic," Environment and Planning B, , vol. 48(4), pages 828-844, May.
    20. Ding, Hongxing & Yang, Hai & Xu, Hongli & Li, Ting, 2023. "Status quo-dependent user equilibrium model with adaptive value of time," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 77-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:57:y:2013:i:c:p:342-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.