IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v41y2007i4p478-492.html
   My bibliography  Save this article

Decreasing the passenger waiting time for an intercity rail network

Author

Listed:
  • Vansteenwegen, P.
  • Van Oudheusden, D.

Abstract

To improve the robustness of timetables for a network of passenger train services, this paper seeks to minimize a waiting cost function that includes running time supplements and different types of waiting times and late arrivals. The approach is applied to the whole intercity (IC) network of the Belgian railways. The IC network consists of 14 fast trains connecting all major cities in Belgium. In the first phase of the approach, ideal running time supplements are calculated to safeguard connections when the feeder train is late. These supplements are based on the delay distributions of the trains, the passenger counts and on the weighting of different types of waiting times. In a second phase, continuous Linear Programming (LP) is used to construct an improved timetable with well-scheduled connections and, whenever possible, with ideal running time supplements. Simulation evaluates different timetables and makes further improvement of the LP timetable possible. For the case of the IC network, the final result is a timetable with suitable transfer times and a waiting cost, that is, 40% lower than the current timetable. Since continuous LP modelling is applied, the proposed technique is very promising for developing better timetables - even for very extensive railway networks.

Suggested Citation

  • Vansteenwegen, P. & Van Oudheusden, D., 2007. "Decreasing the passenger waiting time for an intercity rail network," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 478-492, May.
  • Handle: RePEc:eee:transb:v:41:y:2007:i:4:p:478-492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(06)00104-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blayac, Thierry & Causse, Anne, 2001. "Value of travel time: a theoretical legitimization of some nonlinear representative utility in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 391-400, May.
    2. Wardman, Mark, 2004. "Public transport values of time," Transport Policy, Elsevier, vol. 11(4), pages 363-377, October.
    3. Leo G. Kroon & Leon W. P. Peeters, 2003. "A Variable Trip Time Model for Cyclic Railway Timetabling," Transportation Science, INFORMS, vol. 37(2), pages 198-212, May.
    4. A. Higgins & E. Kozan, 1998. "Modeling Train Delays in Urban Networks," Transportation Science, INFORMS, vol. 32(4), pages 346-357, November.
    5. Higgins, A. & Kozan, E. & Ferreira, L., 1996. "Optimal scheduling of trains on a single line track," Transportation Research Part B: Methodological, Elsevier, vol. 30(2), pages 147-161, April.
    6. Vansteenwegen, P. & Oudheusden, D. Van, 2006. "Developing railway timetables which guarantee a better service," European Journal of Operational Research, Elsevier, vol. 173(1), pages 337-350, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sels, P. & Vansteenwegen, P. & Dewilde, T. & Cattrysse, D. & Waquet, B. & Joubert, A., 2014. "The train platforming problem: The infrastructure management company perspective," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 55-72.
    2. Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
    3. Dewilde, Thijs & Sels, Peter & Cattrysse, Dirk & Vansteenwegen, Pieter, 2014. "Improving the robustness in railway station areas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 276-286.
    4. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Masoud Yaghini & Mohammad Reza Amin-Naseri, 2017. "Timetable optimization models and methods for minimizing passenger waiting time at public transit terminals," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(3), pages 278-304, April.
    5. Enrique Castillo & Inmaculada Gallego & José Ureña & José Coronado, 2009. "Timetabling optimization of a single railway track line with sensitivity analysis," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-287, December.
    6. Zhang, Jianhua & Hu, Funian & Wang, Shuliang & Dai, Yang & Wang, Yixing, 2016. "Structural vulnerability and intervention of high speed railway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 743-751.
    7. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    8. Xuan Li & Toshiyuki Yamamoto & Tao Yan & Lili Lu & Xiaofei Ye, 2020. "First Train Timetabling for Urban Rail Transit Networks with Maximum Passenger Transfer Satisfaction," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    9. Mizuyo Takamatsu & Azuma Taguchi, 2020. "Bus Timetable Design to Ensure Smooth Transfers in Areas with Low-Frequency Public Transportation Services," Transportation Science, INFORMS, vol. 54(5), pages 1238-1250, September.
    10. Yuan, Yalong & Yang, Min & Feng, Tao & Ma, Yafeng & Ren, Yifeng & Ruan, Xinpei, 2022. "Heterogeneity in the transfer time of air-rail intermodal passengers based on ticket booking data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 533-552.
    11. Jens Parbo & Otto Anker Nielsen & Carlo Giacomo Prato, 2016. "Passenger Perspectives in Railway Timetabling: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 500-526, July.
    12. Shi, Feng & Zhou, Zhao & Yao, Jia & Huang, Helai, 2012. "Incorporating transfer reliability into equilibrium analysis of railway passenger flow," European Journal of Operational Research, Elsevier, vol. 220(2), pages 378-385.
    13. Cacchiani, Valentina & Caprara, Alberto & Toth, Paolo, 2010. "Scheduling extra freight trains on railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 215-231, February.
    14. Robenek, Tomáš & Maknoon, Yousef & Azadeh, Shadi Sharif & Chen, Jianghang & Bierlaire, Michel, 2016. "Passenger centric train timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 107-126.
    15. Zhang, Jianhua & Wang, Shuliang & Wang, Xiaoyuan, 2018. "Comparison analysis on vulnerability of metro networks based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 72-78.
    16. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    17. Talebian, Ahmadreza & Zou, Bo & Peivandi, Ahmad, 2018. "Capacity allocation in vertically integrated rail systems: A bargaining approach," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 167-191.
    18. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    19. Gheorghe-Stelian BALAN & Mariana BALAN, 2011. "Optimization models of rail transportation under the financial crisis," Scientific Bulletin - Economic Sciences, University of Pitesti, vol. 10(1), pages 72-80.
    20. Chow, Andy H.F. & Pavlides, Aris, 2018. "Cost functions and multi-objective timetabling of mixed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 335-356.
    21. Vansteenwegen, Pieter & Dewilde, Thijs & Burggraeve, Sofie & Cattrysse, Dirk, 2016. "An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems," European Journal of Operational Research, Elsevier, vol. 252(1), pages 39-53.
    22. Zhang, Jianhua & Xu, Xiaoming & Hong, Liu & Wang, Shuliang & Fei, Qi, 2011. "Networked analysis of the Shanghai subway network, in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4562-4570.
    23. Rupp, Nicholas G., 2009. "Do carriers internalize congestion costs? Empirical evidence on the internalization question," Journal of Urban Economics, Elsevier, vol. 65(1), pages 24-37, January.
    24. König, Eva & Schön, Cornelia, 2021. "Railway delay management with passenger rerouting considering train capacity constraints," European Journal of Operational Research, Elsevier, vol. 288(2), pages 450-465.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Jun Zheng, 2018. "Emergency Train Scheduling on Chinese High-Speed Railways," Transportation Science, INFORMS, vol. 52(5), pages 1077-1091, October.
    2. Zhou, Xuesong & Zhong, Ming, 2007. "Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 320-341, March.
    3. Li, Feng & Sheu, Jiuh-Biing & Gao, Zi-You, 2014. "Deadlock analysis, prevention and train optimal travel mechanism in single-track railway system," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 385-414.
    4. Xie, J. & Wong, S.C. & Zhan, S. & Lo, S.M. & Chen, Anthony, 2020. "Train schedule optimization based on schedule-based stochastic passenger assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    5. Lee, Yusin & Chen, Chuen-Yih, 2009. "A heuristic for the train pathing and timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 837-851, September.
    6. Mizuyo Takamatsu & Azuma Taguchi, 2020. "Bus Timetable Design to Ensure Smooth Transfers in Areas with Low-Frequency Public Transportation Services," Transportation Science, INFORMS, vol. 54(5), pages 1238-1250, September.
    7. Shi, Feng & Zhou, Zhao & Yao, Jia & Huang, Helai, 2012. "Incorporating transfer reliability into equilibrium analysis of railway passenger flow," European Journal of Operational Research, Elsevier, vol. 220(2), pages 378-385.
    8. E. Ursavas & Stuart X. Zhu, 2018. "Integrated Passenger and Freight Train Planning on Shared-Use Corridors," Service Science, INFORMS, vol. 52(6), pages 1376-1390, December.
    9. Zeyu Wang & Leishan Zhou & Bin Guo & Xing Chen & Hanxiao Zhou, 2021. "An Efficient Hybrid Approach for Scheduling the Train Timetable for the Longer Distance High-Speed Railway," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    10. Zhou, Xuesong & Zhong, Ming, 2005. "Bicriteria train scheduling for high-speed passenger railroad planning applications," European Journal of Operational Research, Elsevier, vol. 167(3), pages 752-771, December.
    11. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    12. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    13. Chow, Andy H.F. & Pavlides, Aris, 2018. "Cost functions and multi-objective timetabling of mixed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 335-356.
    14. Hänseler, Flurin S. & van den Heuvel, Jeroen P.A. & Cats, Oded & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "A passenger-pedestrian model to assess platform and train usage from automated data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 948-968.
    15. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    16. Canca, David & Barrena, Eva & De-Los-Santos, Alicia & Andrade-Pineda, José Luis, 2016. "Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 251-267.
    17. Burdett, R.L. & Kozan, E., 2010. "A disjunctive graph model and framework for constructing new train schedules," European Journal of Operational Research, Elsevier, vol. 200(1), pages 85-98, January.
    18. Vansteenwegen, Pieter & Dewilde, Thijs & Burggraeve, Sofie & Cattrysse, Dirk, 2016. "An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems," European Journal of Operational Research, Elsevier, vol. 252(1), pages 39-53.
    19. Canca, David & Andrade-Pineda, José Luis & De los Santos, Alicia & Calle, Marcos, 2018. "The Railway Rapid Transit frequency setting problem with speed-dependent operation costs," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 494-519.
    20. Dewilde, Thijs & Sels, Peter & Cattrysse, Dirk & Vansteenwegen, Pieter, 2014. "Improving the robustness in railway station areas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 276-286.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:41:y:2007:i:4:p:478-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.