IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v288y2021i2p450-465.html
   My bibliography  Save this article

Railway delay management with passenger rerouting considering train capacity constraints

Author

Listed:
  • König, Eva
  • Schön, Cornelia

Abstract

Delay management for railways is concerned with the question of whether a train should wait for a delayed feeder train or depart on time. The answer should not only depend on the length of the delay but also consider other factors, such as capacity restrictions. We present an optimization model for delay management in railway networks that accounts for capacity constraints on the number of passengers that a train can effectively carry. While limited capacities of tracks and stations have been considered in delay management models, passenger train capacity has been neglected in the literature so far, implicitly assuming an infinite train capacity. However, even in open systems where no seat reservation is required and passengers may stand during the journey if all seats are occupied, physical space is naturally limited, and the number of standing seats is constrained for passenger safety reasons. We present a mixed-integer nonlinear programming formulation for the delay management problem with passenger rerouting and capacities of trains. Our model allows the rerouting of passengers missing their connection due to delays or capacity constraints. We linearize the model in exact and approximate ways and experimentally compare the different approaches with the solution of a reference model from the literature that neglects capacity constraints. The results demonstrate that there is a significant impact of considering train capacity restrictions in decisions to manage delays.

Suggested Citation

  • König, Eva & Schön, Cornelia, 2021. "Railway delay management with passenger rerouting considering train capacity constraints," European Journal of Operational Research, Elsevier, vol. 288(2), pages 450-465.
  • Handle: RePEc:eee:ejores:v:288:y:2021:i:2:p:450-465
    DOI: 10.1016/j.ejor.2020.05.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720305166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.05.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marie Schmidt & Leo Kroon & Anita Schöbel & Paul Bouman, 2017. "The Travelers Route Choice Problem Under Uncertainty: Dominance Relations Between Strategies," Operations Research, INFORMS, vol. 65(1), pages 184-199, February.
    2. Twan Dollevoet & Dennis Huisman & Marie Schmidt & Anita Schöbel, 2012. "Delay Management with Rerouting of Passengers," Transportation Science, INFORMS, vol. 46(1), pages 74-89, February.
    3. Niu, Huimin & Zhou, Xuesong & Tian, Xiaopeng, 2018. "Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 70-101.
    4. Evelien van der Hurk & Leo Kroon & Gábor Maróti, 2018. "Passenger Advice and Rolling Stock Rescheduling Under Uncertainty for Disruption Management," Service Science, INFORMS, vol. 52(6), pages 1391-1411, December.
    5. Cordone, Roberto & Redaelli, Francesco, 2011. "Optimizing the demand captured by a railway system with a regular timetable," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 430-446, February.
    6. Mohammad Hossein Keyhani & Mathias Schnee & Karsten Weihe, 2017. "Arrive in Time by Train with High Probability," Transportation Science, INFORMS, vol. 51(4), pages 1122-1137, November.
    7. Twan Dollevoet & Dennis Huisman & Leo Kroon & Marie Schmidt & Anita Schöbel, 2015. "Delay Management Including Capacities of Stations," Transportation Science, INFORMS, vol. 49(2), pages 185-203, May.
    8. Wu, Tai-Hsi, 1997. "A note on a global approach for general 0-1 fractional programming," European Journal of Operational Research, Elsevier, vol. 101(1), pages 220-223, August.
    9. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    10. Corman, Francesco & D’Ariano, Andrea & Marra, Alessio D. & Pacciarelli, Dario & Samà, Marcella, 2017. "Integrating train scheduling and delay management in real-time railway traffic control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 213-239.
    11. Joaquín de Cea & Enrique Fernández, 1993. "Transit Assignment for Congested Public Transport Systems: An Equilibrium Model," Transportation Science, INFORMS, vol. 27(2), pages 133-147, May.
    12. Yulin Liu & Jonathan Bunker & Luis Ferreira, 2010. "Transit Users’ Route‐Choice Modelling in Transit Assignment: A Review," Transport Reviews, Taylor & Francis Journals, vol. 30(6), pages 753-769, March.
    13. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    14. Michael Schachtebeck & Anita Schöbel, 2010. "To Wait or Not to Wait---And Who Goes First? Delay Management with Priority Decisions," Transportation Science, INFORMS, vol. 44(3), pages 307-321, August.
    15. Heilporn, Géraldine & De Giovanni, Luigi & Labbé, Martine, 2008. "Optimization models for the single delay management problem in public transportation," European Journal of Operational Research, Elsevier, vol. 189(3), pages 762-774, September.
    16. Ralf Rückert & Martin Lemnian & Christoph Blendinger & Steffen Rechner & Matthias Müller-Hannemann, 2017. "PANDA: a software tool for improved train dispatching with focus on passenger flows," Public Transport, Springer, vol. 9(1), pages 307-324, July.
    17. Binder, Stefan & Maknoon, Yousef & Bierlaire, Michel, 2017. "Exogenous priority rules for the capacitated passenger assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 19-42.
    18. Vansteenwegen, P. & Van Oudheusden, D., 2007. "Decreasing the passenger waiting time for an intercity rail network," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 478-492, May.
    19. Fred Glover & Randy Glover & Joe Lorenzo & Claude McMillan, 1982. "The Passenger-Mix Problem in the Scheduled Airlines," Interfaces, INFORMS, vol. 12(3), pages 73-80, June.
    20. Marie Schmidt & Leo Kroon & Anita Schöbel & Paul Bouman, 2017. "The Travelers Route Choice Problem Under Uncertainty: Dominance Relations Between Strategies," Operations Research, INFORMS, vol. 65(1), pages 184-199, February.
    21. Leonardo Lamorgese & Carlo Mannino & Mauro Piacentini, 2016. "Optimal Train Dispatching by Benders’-Like Reformulation," Transportation Science, INFORMS, vol. 50(3), pages 910-925, August.
    22. Cynthia Barnhart & Timothy S. Kniker & Manoj Lohatepanont, 2002. "Itinerary-Based Airline Fleet Assignment," Transportation Science, INFORMS, vol. 36(2), pages 199-217, May.
    23. Shipra Agrawal & Zizhuo Wang & Yinyu Ye, 2014. "A Dynamic Near-Optimal Algorithm for Online Linear Programming," Operations Research, INFORMS, vol. 62(4), pages 876-890, August.
    24. Lucas P. Veelenturf & Martin P. Kidd & Valentina Cacchiani & Leo G. Kroon & Paolo Toth, 2016. "A Railway Timetable Rescheduling Approach for Handling Large-Scale Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 841-862, August.
    25. Andreas Ginkel & Anita Schöbel, 2007. "To Wait or Not to Wait? The Bicriteria Delay Management Problem in Public Transportation," Transportation Science, INFORMS, vol. 41(4), pages 527-538, November.
    26. Robert Aboolian & Oded Berman & Dmitry Krass, 2012. "Profit Maximizing Distributed Service System Design with Congestion and Elastic Demand," Transportation Science, INFORMS, vol. 46(2), pages 247-261, May.
    27. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    28. Manoj Lohatepanont & Cynthia Barnhart, 2004. "Airline Schedule Planning: Integrated Models and Algorithms for Schedule Design and Fleet Assignment," Transportation Science, INFORMS, vol. 38(1), pages 19-32, February.
    29. Sven Krumke & Clemens Thielen & Christiane Zeck, 2011. "Extensions to online delay management on a single train line: new bounds for delay minimization and profit maximization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 53-75, August.
    30. Peter P. Belobaba & András Farkas, 1999. "Yield Management Impacts on Airline Spill Estimation," Transportation Science, INFORMS, vol. 33(2), pages 217-232, May.
    31. Leonardo Lamorgese & Carlo Mannino, 2015. "An Exact Decomposition Approach for the Real-Time Train Dispatching Problem," Operations Research, INFORMS, vol. 63(1), pages 48-64, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva König, 2020. "A review on railway delay management," Public Transport, Springer, vol. 12(2), pages 335-361, June.
    2. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    3. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    4. Leonardo Lamorgese & Carlo Mannino & Mauro Piacentini, 2016. "Optimal Train Dispatching by Benders’-Like Reformulation," Transportation Science, INFORMS, vol. 50(3), pages 910-925, August.
    5. Mizuyo Takamatsu & Azuma Taguchi, 2020. "Bus Timetable Design to Ensure Smooth Transfers in Areas with Low-Frequency Public Transportation Services," Transportation Science, INFORMS, vol. 54(5), pages 1238-1250, September.
    6. Zhan, Shuguang & Wong, S.C. & Shang, Pan & Peng, Qiyuan & Xie, Jiemin & Lo, S.M., 2021. "Integrated railway timetable rescheduling and dynamic passenger routing during a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 86-123.
    7. Corman, Francesco & D’Ariano, Andrea & Marra, Alessio D. & Pacciarelli, Dario & Samà, Marcella, 2017. "Integrating train scheduling and delay management in real-time railway traffic control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 213-239.
    8. Luan, Xiaojie & De Schutter, Bart & Meng, Lingyun & Corman, Francesco, 2020. "Decomposition and distributed optimization of real-time traffic management for large-scale railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 72-97.
    9. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
    10. Van Thielen, Sofie & Corman, Francesco & Vansteenwegen, Pieter, 2018. "Considering a dynamic impact zone for real-time railway traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 39-59.
    11. Bettinelli, Andrea & Santini, Alberto & Vigo, Daniele, 2017. "A real-time conflict solution algorithm for the train rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 237-265.
    12. Luan, Xiaojie & Corman, Francesco, 2022. "Passenger-oriented traffic control for rail networks: An optimization model considering crowding effects on passenger choices and train operations," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 239-272.
    13. Twan Dollevoet & Dennis Huisman & Leo Kroon & Marie Schmidt & Anita Schöbel, 2015. "Delay Management Including Capacities of Stations," Transportation Science, INFORMS, vol. 49(2), pages 185-203, May.
    14. Gao, Yuan & Kroon, Leo & Schmidt, Marie & Yang, Lixing, 2016. "Rescheduling a metro line in an over-crowded situation after disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 425-449.
    15. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 1: Optimization problems and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 41-71.
    16. Dollevoet, T.A.B. & Huisman, D. & Schöbel, A. & Schmidt, M.E., 2012. "Delay Management including Capacities of Stations," Econometric Institute Research Papers EI 2012-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Zhan, Shuguang & Kroon, Leo G. & Zhao, Jun & Peng, Qiyuan, 2016. "A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 32-61.
    18. Sato, Keisuke & Fukumura, Naoto, 2012. "Real-time freight locomotive rescheduling and uncovered train detection during disruption," European Journal of Operational Research, Elsevier, vol. 221(3), pages 636-648.
    19. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    20. Michael Schachtebeck & Anita Schöbel, 2010. "To Wait or Not to Wait---And Who Goes First? Delay Management with Priority Decisions," Transportation Science, INFORMS, vol. 44(3), pages 307-321, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:288:y:2021:i:2:p:450-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.