IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v154y2021icp147-174.html
   My bibliography  Save this article

Scheduling multimodal alternative services for managing infrastructure maintenance possessions in railway networks

Author

Listed:
  • Trepat Borecka, Jacob
  • Bešinović, Nikola

Abstract

Highly utilized railway networks require regular infrastructure maintenance. Different track sections often need to be closed for entire days to carry out engineering works, which makes the regular timetables no longer feasible and thus adjusted railway services and temporary alternative services need to be planned. We introduce the Multimodal Alternative Services for Possessions (MASP) problem to support the planning of alternative services, from the passenger and transport operator points of view, including an adjusted train timetable, bus-bridging services and extra train services. The MASP problem is formulated based on the Service Network Design Problem and the Vehicle Routing Problem. To solve it efficiently, we develop a solution framework that incorporates heuristics based on the column and row generation with mixed-integer linear programming. The developed framework provides the optimized alternative service routes, schedules and passenger flows routing. We demonstrated the performance of the MASP solution framework on the real-life Dutch railway network. The results show that the MASP framework is capable of efficiently generating alternative services to route passenger flows affected by possessions with a very limited increase in the total passenger costs compared to a scenario with no link closures. High computational efficiency is observed even for highly disrupted networks.

Suggested Citation

  • Trepat Borecka, Jacob & Bešinović, Nikola, 2021. "Scheduling multimodal alternative services for managing infrastructure maintenance possessions in railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 147-174.
  • Handle: RePEc:eee:transb:v:154:y:2021:i:c:p:147-174
    DOI: 10.1016/j.trb.2021.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521001946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louwerse, Ilse & Huisman, Dennis, 2014. "Adjusting a railway timetable in case of partial or complete blockades," European Journal of Operational Research, Elsevier, vol. 235(3), pages 583-593.
    2. Liang, Jinpeng & Wu, Jianjun & Qu, Yunchao & Yin, Haodong & Qu, Xiaobo & Gao, Ziyou, 2019. "Robust bus bridging service design under rail transit system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 97-116.
    3. Burggraeve, Sofie & Vansteenwegen, Pieter, 2017. "Robust routing and timetabling in complex railway stations," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 228-244.
    4. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    5. Vansteenwegen, Pieter & Dewilde, Thijs & Burggraeve, Sofie & Cattrysse, Dirk, 2016. "An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems," European Journal of Operational Research, Elsevier, vol. 252(1), pages 39-53.
    6. Szymula, Christopher & Bešinović, Nikola, 2020. "Passenger-centered vulnerability assessment of railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 30-61.
    7. Andersen, Jardar & Crainic, Teodor Gabriel & Christiansen, Marielle, 2009. "Service network design with management and coordination of multiple fleets," European Journal of Operational Research, Elsevier, vol. 193(2), pages 377-389, March.
    8. Yajuan Deng & Xiaolei Ru & Ziqi Dou & Guohua Liang, 2018. "Design of Bus Bridging Routes in Response to Disruption of Urban Rail Transit," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    9. Evelien van der Hurk & Haris N. Koutsopoulos & Nigel Wilson & Leo G. Kroon & Gábor Maróti, 2016. "Shuttle Planning for Link Closures in Urban Public Transport Networks," Transportation Science, INFORMS, vol. 50(3), pages 947-965, August.
    10. Lucas P. Veelenturf & Martin P. Kidd & Valentina Cacchiani & Leo G. Kroon & Paolo Toth, 2016. "A Railway Timetable Rescheduling Approach for Handling Large-Scale Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 841-862, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    2. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    3. Van Aken, Sander & Bešinović, Nikola & Goverde, Rob M.P., 2017. "Designing alternative railway timetables under infrastructure maintenance possessions," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 224-238.
    4. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    6. Zhang, Huimin & Li, Shukai & Wang, Yihui & Yang, Lixing & Gao, Ziyou, 2021. "Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm," Omega, Elsevier, vol. 102(C).
    7. Wang, Yihui & Zhao, Kangqi & D’Ariano, Andrea & Niu, Ru & Li, Shukai & Luan, Xiaojie, 2021. "Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 87-117.
    8. Chen, Yao & An, Kun, 2021. "Integrated optimization of bus bridging routes and timetables for rail disruptions," European Journal of Operational Research, Elsevier, vol. 295(2), pages 484-498.
    9. Stefan Voß, 2023. "Bus Bunching and Bus Bridging: What Can We Learn from Generative AI Tools like ChatGPT?," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    10. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    11. Ghaemi, Nadjla & Cats, Oded & Goverde, Rob M.P., 2017. "A microscopic model for optimal train short-turnings during complete blockages," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 423-437.
    12. Polinder, Gert-Jaap & Breugem, Thomas & Dollevoet, Twan & Maróti, Gábor, 2019. "An adjustable robust optimization approach for periodic timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 50-68.
    13. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2018. "Reducing Passenger Delays by Rolling Stock Rescheduling," Econometric Institute Research Papers EI2018-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
    15. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    16. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    17. Mo, Baichuan & Koutsopoulos, Haris N. & Zhao, Jinhua, 2022. "Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    18. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    19. Naoto Katayama, 2020. "MIP neighborhood search heuristics for a service network design problem with design-balanced requirements," Journal of Heuristics, Springer, vol. 26(4), pages 475-502, August.
    20. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:154:y:2021:i:c:p:147-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.