IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v179y2023ics1366554523002466.html
   My bibliography  Save this article

Multi-route coordination for bus systems in response to road disruptions

Author

Listed:
  • Zheng, Hankun
  • Sun, Huijun
  • Kang, Liujiang
  • Dai, Peiling
  • Wu, Jianjun

Abstract

Road disruptions frequently occur in practice, resulting in a productivity loss of bus services and widespread passenger delays. These negative impacts are significant, especially when multiple routes are influenced at the same time. In order to mitigate these impacts, this paper proposes a multi-route coordination approach that collaboratively adjusts multiple bus routes and optimizes bus timetables to provide effective alternative bus services for passengers. Three adjusting strategies are adopted for bus routes with varying passenger demand: detouring, short-running, and cancellation. To address the multi-route coordination problem, a column-generation-based two-stage framework is developed. Concretely, a column generation technique is utilized in the first stage to iteratively generate candidate adaptive bus routes and passenger paths. Following that, an integrated integer programming model is built in the second stage to simultaneously determine bus timetables and the combinations of those adaptive bus routes. After realizing the low computational efficiency for large-scale problems, this paper designs a customized decomposition algorithm based on set partitioning to solve the presented model and obtain near-optimal solutions efficiently. Finally, the proposed methodology is applied to an illustrative Sioux Falls network and a real-world bus network in Beijing to verify its validity and effectiveness. Three comparative analyses are conducted to discuss the advantages of the three adjusting strategies, to investigate the benefits of coordinating bus timetables, and to explore the applicability of different adjusting strategies, respectively.

Suggested Citation

  • Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:transe:v:179:y:2023:i:c:s1366554523002466
    DOI: 10.1016/j.tre.2023.103258
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523002466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhenhao & Tafreshian, Amirmahdi & Masoud, Neda, 2020. "Modular transit: Using autonomy and modularity to improve performance in public transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    2. Liang, Jinpeng & Wu, Jianjun & Qu, Yunchao & Yin, Haodong & Qu, Xiaobo & Gao, Ziyou, 2019. "Robust bus bridging service design under rail transit system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 97-116.
    3. Ibarra-Rojas, Omar J. & Rios-Solis, Yasmin A., 2012. "Synchronization of bus timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 599-614.
    4. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2021. "Zonal-based flexible bus service under elastic stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    5. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    6. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    7. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    8. Jin, Jian Gang & Zhao, Jun & Lee, Der-Horng, 2013. "A column generation based approach for the Train Network Design Optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 1-17.
    9. Si-Jia Zhang & Shun-Ping Jia & Yun Bai & Bao-Hua Mao & Cun-Rui Ma & Tong Zhang, 2018. "Optimal Adjustment Schemes on the Long Through-Type Bus Lines considering the Urban Rail Transit Network," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-15, September.
    10. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    11. Chu, James C. & Korsesthakarn, Kanticha & Hsu, Yu-Ting & Wu, Hua-Yen, 2019. "Models and a solution algorithm for planning transfer synchronization of bus timetables," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 247-266.
    12. Wen, Xin & Chung, Sai-Ho & Ji, Ping & Sheu, Jiuh-Biing, 2022. "Individual scheduling approach for multi-class airline cabin crew with manpower requirement heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    13. Kang, Liujiang & Li, Hao & Sun, Huijun & Wu, Jianjun & Cao, Zhiguang & Buhigiro, Nsabimana, 2021. "First train timetabling and bus service bridging in intermodal bus-and-train transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 443-462.
    14. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    15. Ceder, A. & Golany, B. & Tal, O., 2001. "Creating bus timetables with maximal synchronization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 913-928, December.
    16. Liu, Xiaohan & Qu, Xiaobo & Ma, Xiaolei, 2021. "Improving flex-route transit services with modular autonomous vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    17. Evelien van der Hurk & Haris N. Koutsopoulos & Nigel Wilson & Leo G. Kroon & Gábor Maróti, 2016. "Shuttle Planning for Link Closures in Urban Public Transport Networks," Transportation Science, INFORMS, vol. 50(3), pages 947-965, August.
    18. Omar J. Ibarra-Rojas & Fernando López-Irarragorri & Yasmin A. Rios-Solis, 2016. "Multiperiod Bus Timetabling," Transportation Science, INFORMS, vol. 50(3), pages 805-822, August.
    19. Jian Gang Jin & Kwong Meng Teo & Amedeo R. Odoni, 2016. "Optimizing Bus Bridging Services in Response to Disruptions of Urban Transit Rail Networks," Transportation Science, INFORMS, vol. 50(3), pages 790-804, August.
    20. Ma, Jie & Xu, Min & Meng, Qiang & Cheng, Lin, 2020. "Ridesharing user equilibrium problem under OD-based surge pricing strategy," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 1-24.
    21. Liang, Xiao & Correia, Gonçalo Homem de Almeida & van Arem, Bart, 2016. "Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 115-129.
    22. Chen, Jingxu & Liu, Zhiyuan & Wang, Shuaian & Chen, Xuewu, 2018. "Continuum approximation modeling of transit network design considering local route service and short-turn strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 165-188.
    23. Chen, Yao & An, Kun, 2021. "Integrated optimization of bus bridging routes and timetables for rail disruptions," European Journal of Operational Research, Elsevier, vol. 295(2), pages 484-498.
    24. van Engelen, Matti & Cats, Oded & Post, Henk & Aardal, Karen, 2018. "Enhancing flexible transport services with demand-anticipatory insertion heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 110-121.
    25. Akyüz, M. Hakan & Dekker, Rommert & Sharif Azadeh, Shadi, 2023. "Partial and complete replanning of an intermodal logistic system under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    26. Chen, Jingxu & Liu, Zhiyuan & Zhu, Senlai & Wang, Wei, 2015. "Design of limited-stop bus service with capacity constraint and stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 1-15.
    27. Wang, Dong & Liao, Feixiong, 2023. "Incentivized user-based relocation strategies for moderating supply–demand dynamics in one-way car-sharing services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    28. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    29. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    2. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    3. Chu, James C. & Korsesthakarn, Kanticha & Hsu, Yu-Ting & Wu, Hua-Yen, 2019. "Models and a solution algorithm for planning transfer synchronization of bus timetables," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 247-266.
    4. Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.
    5. Wu, Jiaming & Kulcsár, Balázs & Selpi, & Qu, Xiaobo, 2021. "A modular, adaptive, and autonomous transit system (MAATS): A in-motion transfer strategy and performance evaluation in urban grid transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 81-98.
    6. Chen, Yao & An, Kun, 2021. "Integrated optimization of bus bridging routes and timetables for rail disruptions," European Journal of Operational Research, Elsevier, vol. 295(2), pages 484-498.
    7. Zhang, Ping & Sun, Huijun & Qu, Yunchao & Yin, Haodong & Jin, Jian Gang & Wu, Jianjun, 2021. "Model and algorithm of coordinated flow controlling with station-based constraints in a metro system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    8. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    9. Cortés, Cristián E. & Gil, Cristiam & Gschwender, Antonio & Rey, Pablo A., 2023. "The bus synchronization timetabling problem with dwelling times," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    10. Fonseca, João Paiva & van der Hurk, Evelien & Roberti, Roberto & Larsen, Allan, 2018. "A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 128-149.
    11. Fouilhoux, P. & Ibarra-Rojas, O.J. & Kedad-Sidhoum, S. & Rios-Solis, Y.A., 2016. "Valid inequalities for the synchronization bus timetabling problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 442-450.
    12. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    13. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    14. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    15. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    16. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    17. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    18. Yinfei Feng & Zhichao Cao & Silin Zhang, 2022. "Shuttle Bus Timetable Adjustment in Response to Behind-Schedule Commuter Railway Disturbance," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    19. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    20. Sunhyung Yoo & Jinwoo Brian Lee & Hoon Han, 2023. "A Reinforcement Learning approach for bus network design and frequency setting optimisation," Public Transport, Springer, vol. 15(2), pages 503-534, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:179:y:2023:i:c:s1366554523002466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.