IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v196y2025ics0191261525000827.html
   My bibliography  Save this article

A risk-averse two-stage stochastic programming approach for backup rolling stock allocation and metro train rescheduling under uncertain disturbances

Author

Listed:
  • Su, Boyi
  • D’Ariano, Andrea
  • Su, Shuai
  • Wang, Zhikai
  • Tessitore, Marta Leonina
  • Tang, Tao

Abstract

Disturbances occur inevitably during daily operations of the metro system, leading to train delays and low service quality. Different from common deterministic reactive train rescheduling frameworks, taking the inherent uncertain characteristic of disturbance into account, this paper formulates a two-stage stochastic programming model to address the integration of proactive backup rolling stock allocation and reactive train rescheduling. Specifically, the backup rolling stock allocation plan is optimized in the first stage, while the train timetable and rolling stock circulation are rescheduled under different disturbance realizations in the second stage. The objective is to achieve a balance between allocation costs and negative disturbance impacts, which is evaluated by the mean-conditional value-at-risk criterion on account of the risk-averse attitude of train dispatchers. For computational tractability, the proposed model is reformulated as an equivalent mixed-integer linear programming (MILP) model. To improve computational efficiency, an innovative solution framework is designed. The integer L-shaped method is used to decompose the MILP into a master problem and a series of subproblems, with three acceleration techniques introduced to expedite the subproblem-solving process. Finally, numerical experiments are carried out based on the Beijing Batong Metro Line to verify the performance of the proposed mathematical model and solution framework. The results indicate that the proposed method outperforms benchmarks. Furthermore, comprehensive analysis is conducted on the effects of different parameter settings to provide some managerial insights for dispatchers.

Suggested Citation

  • Su, Boyi & D’Ariano, Andrea & Su, Shuai & Wang, Zhikai & Tessitore, Marta Leonina & Tang, Tao, 2025. "A risk-averse two-stage stochastic programming approach for backup rolling stock allocation and metro train rescheduling under uncertain disturbances," Transportation Research Part B: Methodological, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:transb:v:196:y:2025:i:c:s0191261525000827
    DOI: 10.1016/j.trb.2025.103233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261525000827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2025.103233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Louwerse, Ilse & Huisman, Dennis, 2014. "Adjusting a railway timetable in case of partial or complete blockades," European Journal of Operational Research, Elsevier, vol. 235(3), pages 583-593.
    2. Lucas P. Veelenturf & Daniel Potthoff & Dennis Huisman & Leo G. Kroon & Gábor Maróti & Albert P. M. Wagelmans, 2016. "A Quasi-Robust Optimization Approach for Crew Rescheduling," Transportation Science, INFORMS, vol. 50(1), pages 204-215, February.
    3. Xiu, Cong & Pan, Jinyi & D'Ariano, Andrea & Zhan, Shuguang & Peng, Qiyuan, 2024. "Passenger service-oriented timetable rescheduling for large-scale disruptions in a railway network: A heuristic-based alternating direction method of multipliers," Omega, Elsevier, vol. 125(C).
    4. Wang, Pengling & Goverde, Rob M.P., 2017. "Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 340-361.
    5. Arianna Alfieri & Rutger Groot & Leo Kroon & Alexander Schrijver, 2006. "Efficient Circulation of Railway Rolling Stock," Transportation Science, INFORMS, vol. 40(3), pages 378-391, August.
    6. Zhan, Shuguang & Wong, S.C. & Shang, Pan & Peng, Qiyuan & Xie, Jiemin & Lo, S.M., 2021. "Integrated railway timetable rescheduling and dynamic passenger routing during a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 86-123.
    7. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    8. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    9. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    10. Gao, Yuan & Kroon, Leo & Schmidt, Marie & Yang, Lixing, 2016. "Rescheduling a metro line in an over-crowded situation after disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 425-449.
    11. Wang, Yihui & Zhao, Kangqi & D’Ariano, Andrea & Niu, Ru & Li, Shukai & Luan, Xiaojie, 2021. "Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 87-117.
    12. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    13. Zhu, Yongqiu & Goverde, Rob M.P., 2019. "Railway timetable rescheduling with flexible stopping and flexible short-turning during disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 149-181.
    14. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    15. Valentina Cacchiani & Alberto Caprara & Laura Galli & Leo Kroon & Gábor Maróti & Paolo Toth, 2012. "Railway Rolling Stock Planning: Robustness Against Large Disruptions," Transportation Science, INFORMS, vol. 46(2), pages 217-232, May.
    16. Cadarso, Luis & Marín, Ángel & Maróti, Gábor, 2013. "Recovery of disruptions in rapid transit networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 15-33.
    17. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
    18. Yin, Jiateng & Pu, Fan & Yang, Lixing & D’Ariano, Andrea & Wang, Zhouhong, 2023. "Integrated optimization of rolling stock allocation and train timetables for urban rail transit networks: A benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    19. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    20. Yang, Lixing & Zhou, Xuesong & Gao, Ziyou, 2014. "Credibility-based rescheduling model in a double-track railway network: a fuzzy reliable optimization approach," Omega, Elsevier, vol. 48(C), pages 75-93.
    21. Zheng, Hankun & Sun, Huijun & Wu, Jianjun & Kang, Liujiang, 2024. "Alternative service network design for bus systems responding to time-varying road disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 188(C).
    22. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    23. Zhan, Shuguang & Kroon, Leo G. & Veelenturf, Lucas P. & Wagenaar, Joris C., 2015. "Real-time high-speed train rescheduling in case of a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 182-201.
    24. Altazin, Estelle & Dauzère-Pérès, Stéphane & Ramond, François & Tréfond, Sabine, 2020. "A multi-objective optimization-simulation approach for real time rescheduling in dense railway systems," European Journal of Operational Research, Elsevier, vol. 286(2), pages 662-672.
    25. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2021. "Risk of delay evaluation in real-time train scheduling with uncertain dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    2. Wang, Yihui & Zhao, Kangqi & D’Ariano, Andrea & Niu, Ru & Li, Shukai & Luan, Xiaojie, 2021. "Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 87-117.
    3. Zhan, Shuguang & Xie, Jiemin & Wong, S.C. & Zhu, Yongqiu & Corman, Francesco, 2024. "Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    4. Ying, Chengshuo & Chow, Andy H.F. & Yan, Yimo & Kuo, Yong-Hong & Wang, Shouyang, 2024. "Adaptive rescheduling of rail transit services with short-turnings under disruptions via a multi-agent deep reinforcement learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 188(C).
    5. Chen, Zebin & D’Ariano, Andrea & Li, Shukai & Tessitore, Marta Leonina & Yang, Lixing, 2024. "Robust dynamic train regulation integrated with stop-skipping strategy in urban rail networks: An outer approximation based solution method," Omega, Elsevier, vol. 128(C).
    6. Zhu, Yongqiu & Goverde, Rob M.P., 2019. "Railway timetable rescheduling with flexible stopping and flexible short-turning during disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 149-181.
    7. Zhu, Yongqiu & Goverde, Rob M.P., 2020. "Integrated timetable rescheduling and passenger reassignment during railway disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 282-314.
    8. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    9. Zhan, Shuguang & Wong, S.C. & Shang, Pan & Peng, Qiyuan & Xie, Jiemin & Lo, S.M., 2021. "Integrated railway timetable rescheduling and dynamic passenger routing during a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 86-123.
    10. Wang, Entai & Yang, Lixing & Yin, Jiateng & Zhang, Jinlei & Gao, Ziyou, 2024. "Passenger-oriented rolling stock scheduling in the metro system with multiple depots: Network flow based approaches," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    11. Zhu, Jia Hui & Dollevoet, Twan & Huisman, Dennis, 2025. "An exact and heuristic framework for rolling stock rescheduling with railway infrastructure availability constraints," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
    12. Gao, Yuan & Kroon, Leo & Schmidt, Marie & Yang, Lixing, 2016. "Rescheduling a metro line in an over-crowded situation after disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 425-449.
    13. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    14. Chang Han & Leishan Zhou & Bin Guo & Yixiang Yue & Wenqiang Zhao & Zeyu Wang & Hanxiao Zhou, 2023. "An Integrated Strategy for Rescheduling High-Speed Train Operation under Single-Direction Disruption," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    15. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
    16. Wang, Xuekai & D’Ariano, Andrea & Su, Shuai & Tang, Tao, 2023. "Cooperative train control during the power supply shortage in metro system: A multi-agent reinforcement learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 244-278.
    17. Vansteenwegen, Pieter & Dewilde, Thijs & Burggraeve, Sofie & Cattrysse, Dirk, 2016. "An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems," European Journal of Operational Research, Elsevier, vol. 252(1), pages 39-53.
    18. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    19. Ji, Hangyu & Wang, Rui & Zhang, Chuntian & Yin, Jiateng & Ma, Lin & Yang, Lixing, 2024. "Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach," Omega, Elsevier, vol. 124(C).
    20. Letian Fan & Ke Qiao & Yongsheng Chen & Meiling Hui & Tiqiang Shen & Pengcheng Wen, 2025. "Passenger-Centric Integrated Timetable Rescheduling for High-Speed Railways Under Multiple Disruptions," Sustainability, MDPI, vol. 17(12), pages 1-22, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:196:y:2025:i:c:s0191261525000827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.