IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v121y2019icp168-183.html
   My bibliography  Save this article

Modeling tagged pedestrian motion: A mean-field type game approach

Author

Listed:
  • Aurell, Alexander
  • Djehiche, Boualem

Abstract

This paper suggests a model for the motion of tagged pedestrians: Pedestrians moving towards a specified targeted destination, which they are forced to reach. It aims to be a decision-making tool for the positioning of fire fighters, security personnel and other services in a pedestrian environment. Taking interaction with the surrounding crowd into account leads to a differential nonzero-sum game model where the tagged pedestrians compete with the surrounding crowd of ordinary pedestrians. When deciding how to act, pedestrians consider crowd distribution-dependent effects, like congestion and crowd aversion. Including such effects in the parameters of the game, makes it a mean-field type game. The equilibrium control is characterized, and special cases are discussed. Behavior in the model is studied by numerical simulations.

Suggested Citation

  • Aurell, Alexander & Djehiche, Boualem, 2019. "Modeling tagged pedestrian motion: A mean-field type game approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 168-183.
  • Handle: RePEc:eee:transb:v:121:y:2019:i:c:p:168-183
    DOI: 10.1016/j.trb.2019.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151731069X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    2. Jin, Cheng-Jie & Jiang, Rui & Yin, Jun-Lin & Dong, Li-Yun & Li, Dawei, 2017. "Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 666-681.
    3. Alexander Aurell, 2018. "Mean-Field Type Games between Two Players Driven by Backward Stochastic Differential Equations," Games, MDPI, vol. 9(4), pages 1-26, November.
    4. Buckdahn, Rainer & Li, Juan & Peng, Shige, 2009. "Mean-field backward stochastic differential equations and related partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3133-3154, October.
    5. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    6. Lachapelle, Aimé & Wolfram, Marie-Therese, 2011. "On a mean field game approach modeling congestion and aversion in pedestrian crowds," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1572-1589.
    7. Huang, Ling & Wong, S.C. & Zhang, Mengping & Shu, Chi-Wang & Lam, William H.K., 2009. "Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 127-141, January.
    8. Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
    9. Ermal Feleqi, 2013. "The Derivation of Ergodic Mean Field Game Equations for Several Populations of Players," Dynamic Games and Applications, Springer, vol. 3(4), pages 523-536, December.
    10. repec:dau:papers:123456789/5946 is not listed on IDEAS
    11. Boualem Djehiche & Hamidou Tembine & Raul Tempone, 2014. "A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control," Papers 1404.1441, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Aurell, 2018. "Mean-Field Type Games between Two Players Driven by Backward Stochastic Differential Equations," Games, MDPI, vol. 9(4), pages 1-26, November.
    2. Shin, Youngchul & Moon, Ilkyeong, 2023. "Robust building evacuation planning in a dynamic network flow model under collapsible nodes and arcs," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    3. Hancheng Guo & Jie Xiong & Jiayu Zheng, 2024. "Stochastic Maximum Principle for Generalized Mean-Field Delay Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 352-377, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    2. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    3. Xie, Chuan-Zhi Thomas & Chen, Qihua & Zhu, Bin & Lee, Eric Wai Ming & Tang, Tie-Qiao & Yin, Xianfei & Yuan, Zhilu & Zhang, Botao, 2025. "Coordinating dynamic signage for evacuation guidance: A multi-agent reinforcement learning approach integrating mesoscopic crowd modeling and fire propagation," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    4. Canca, David & Zarzo, Alejandro & Algaba, Encarnación & Barrena, Eva, 2013. "Macroscopic attraction-based simulation of pedestrian mobility: A dynamic individual route-choice approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 428-442.
    5. Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
    6. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2011. "Collection, spillback, and dissipation in pedestrian evacuation: A network-based method," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 490-506, March.
    7. von Sivers, Isabella & Köster, Gerta, 2015. "Dynamic stride length adaptation according to utility and personal space," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 104-117.
    8. Jinghong Wang & Siuming Lo & Qingsong Wang & Jinhua Sun & Honglin Mu, 2013. "Risk of Large‐Scale Evacuation Based on the Effectiveness of Rescue Strategies Under Different Crowd Densities," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1553-1563, August.
    9. Wang, Jinhuan & Zhang, Lei & Shi, Qiongyu & Yang, Peng & Hu, Xiaoming, 2015. "Modeling and simulating for congestion pedestrian evacuation with panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 396-409.
    10. Cui, Xiaoting & Ji, Jingwei & Bai, Xuehe & Cao, Yin & Wu, Tong, 2022. "Research and realization of parallel algorithms for large scale crowd evacuation in emergency," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 713-724.
    11. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    12. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    13. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    14. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    15. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    16. Zhang, Xinwei & Zhang, Peihong & Zhong, Maohua, 2021. "A dual adaptive cellular automaton model based on a composite field and pedestrian heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    17. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    18. He, Mengchen & Wang, Qiao & Chen, Juan & Xu, Shiwei & Ma, Jian, 2023. "Modeling pedestrian walking behavior in the flow field with moving walkways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    19. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    20. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:121:y:2019:i:c:p:168-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.