IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v201y2024i1d10.1007_s10957-024-02398-2.html
   My bibliography  Save this article

Stochastic Maximum Principle for Generalized Mean-Field Delay Control Problem

Author

Listed:
  • Hancheng Guo

    (University of Macau)

  • Jie Xiong

    (Southern University of Science and Technology)

  • Jiayu Zheng

    (Shenzhen MSU-BIT University)

Abstract

In this paper, we first derive the existence and uniqueness theorems for solutions to a class of generalized mean-field delay stochastic differential equations and mean-field anticipated backward stochastic differential equations (MFABSDEs). Then we study the stochastic maximum principle for generalized mean-field delay control problem. Since the state equation is distribution-depending, we define the adjoint equation as a MFABSDE in which all the derivatives of the coefficients are in Lions’ sense. We also provide a sufficient condition for the optimality of the control.

Suggested Citation

  • Hancheng Guo & Jie Xiong & Jiayu Zheng, 2024. "Stochastic Maximum Principle for Generalized Mean-Field Delay Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 352-377, April.
  • Handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02398-2
    DOI: 10.1007/s10957-024-02398-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02398-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02398-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Pierre Fouque & Zhaoyu Zhang, 2018. "Mean Field Game with Delay: A Toy Model," Risks, MDPI, vol. 6(3), pages 1-17, September.
    2. G. Rigatos & P. Siano & M. Abbaszadeh & T. Ghosh, 2021. "Nonlinear optimal control of coupled time-delayed models of economic growth," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 375-399, June.
    3. Aurell, Alexander & Djehiche, Boualem, 2019. "Modeling tagged pedestrian motion: A mean-field type game approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 168-183.
    4. Buckdahn, Rainer & Li, Juan & Peng, Shige, 2009. "Mean-field backward stochastic differential equations and related partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3133-3154, October.
    5. Liu, Lidan & Meng, Xinzhu & Zhang, Tonghua, 2017. "Optimal control strategy for an impulsive stochastic competition system with time delays and jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 99-113.
    6. Tingting Ma & Xinzhu Meng & Zhengbo Chang, 2019. "Dynamics and Optimal Harvesting Control for a Stochastic One-Predator-Two-Prey Time Delay System with Jumps," Complexity, Hindawi, vol. 2019, pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Guodong & Meng, Xinzhu, 2019. "Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    2. Alexander Aurell, 2018. "Mean-Field Type Games between Two Players Driven by Backward Stochastic Differential Equations," Games, MDPI, vol. 9(4), pages 1-26, November.
    3. Li, Hanwu, 2024. "Backward stochastic differential equations with double mean reflections," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    4. Qun Shi, 2021. "Generalized Mean-Field Fractional BSDEs With Non-Lipschitz Coefficients," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-77, June.
    5. Kaitong Hu & Zhenjie Ren & Junjian Yang, 2019. "Principal-agent problem with multiple principals," Working Papers hal-02088486, HAL.
    6. Dezhao Li & Huidong Cheng & Yu Liu, 2019. "Dynamic Analysis of Beddington–DeAngelis Predator-Prey System with Nonlinear Impulse Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-13, November.
    7. Shin, Youngchul & Moon, Ilkyeong, 2023. "Robust building evacuation planning in a dynamic network flow model under collapsible nodes and arcs," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    8. Kamal Boukhetala & Jean-François Dupuy, 2019. "Modélisation Stochastique et Statistique Book of Proceedings," Post-Print hal-02593238, HAL.
    9. Douissi, Soukaina & Wen, Jiaqiang & Shi, Yufeng, 2019. "Mean-field anticipated BSDEs driven by fractional Brownian motion and related stochastic control problem," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 282-298.
    10. Bender, Christian, 2014. "Backward SDEs driven by Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2892-2916.
    11. Salah Eddine Choutri & Tembine Hamidou, 2018. "A Stochastic Maximum Principle for Markov Chains of Mean-Field Type," Games, MDPI, vol. 9(4), pages 1-21, October.
    12. Fu, Guanxing & Horst, Ulrich & Xia, Xiaonyu, 2022. "Portfolio Liquidation Games with Self-Exciting Order Flow," Rationality and Competition Discussion Paper Series 327, CRC TRR 190 Rationality and Competition.
    13. Wu, Zhen & Xu, Ruimin, 2019. "Probabilistic interpretation for Sobolev solutions of McKean–Vlasov partial differential equations," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 273-283.
    14. Sin, Myong-Guk & Ri, Kyong-Il & Kim, Kyong-Hui, 2022. "Existence and uniqueness of solution for coupled fractional mean-field forward–backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 190(C).
    15. Romuald Elie & Thibaut Mastrolia & Dylan Possamaï, 2019. "A Tale of a Principal and Many, Many Agents," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 440-467, May.
    16. Klimsiak, Tomasz & Rzymowski, Maurycy, 2023. "Nonlinear BSDEs on a general filtration with drivers depending on the martingale part of the solution," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 424-450.
    17. Briand, Philippe & Cardaliaguet, Pierre & Chaudru de Raynal, Paul-Éric & Hu, Ying, 2020. "Forward and backward stochastic differential equations with normal constraints in law," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7021-7097.
    18. Cai, Yujie & Huang, Jianhui & Maroulas, Vasileios, 2015. "Large deviations of mean-field stochastic differential equations with jumps," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 1-9.
    19. Boualem Djehiche & Hamidou Tembine, 2014. "Risk-Sensitive Mean-Field Type Control under Partial Observation," Papers 1411.7231, arXiv.org.
    20. Meijiao Wang & Qingxin Meng & Yang Shen & Peng Shi, 2023. "Stochastic $$H_{2}/H_{\infty }$$ H 2 / H ∞ Control for Mean-Field Stochastic Differential Systems with (x, u, v)-Dependent Noise," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1024-1060, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02398-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.