IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v3y2013i4p523-536.html
   My bibliography  Save this article

The Derivation of Ergodic Mean Field Game Equations for Several Populations of Players

Author

Listed:
  • Ermal Feleqi

Abstract

This note contains a detailed derivation of the equations of the recent mean field games theory (abbr. MFG), developed by M. Huang, P.E. Caines, and R.P. Malhamé on one hand and by J.-M. Lasry and P.-L. Lions on the other, associated with a class of stochastic differential games, where the players belong to several populations, each of which consisting of a large number of similar and indistinguishable individuals, in the context of periodic diffusions and long-time-average (or ergodic) costs. After introducing a system of N Hamilton–Jacobi–Bellman (abbr. HJB) and N Kolmogorov–Fokker–Planck (abbr. KFP) equations for an N-player game belonging to such a class of games, the system of MFG equations (consisting of as many HJB equations, and of as many KFP equations as is the number of populations) is derived by letting the number of the members of each population go to infinity. For the sake of clarity and for reader’s convenience, the case of a single population of players, as formulated in the work of J.-M. Lasry and P.-L. Lions, is presented first. The note slightly improves the results in this case too, by dealing with more general dynamics and costs. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Ermal Feleqi, 2013. "The Derivation of Ergodic Mean Field Game Equations for Several Populations of Players," Dynamic Games and Applications, Springer, vol. 3(4), pages 523-536, December.
  • Handle: RePEc:spr:dyngam:v:3:y:2013:i:4:p:523-536
    DOI: 10.1007/s13235-013-0088-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s13235-013-0088-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s13235-013-0088-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olivier Guéant & Pierre Louis Lions & Jean-Michel Lasry, 2011. "Mean Field Games and Applications," Post-Print hal-01393103, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Więcek, 2020. "Discrete-Time Ergodic Mean-Field Games with Average Reward on Compact Spaces," Dynamic Games and Applications, Springer, vol. 10(1), pages 222-256, March.
    2. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Aurell, Alexander & Djehiche, Boualem, 2019. "Modeling tagged pedestrian motion: A mean-field type game approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 168-183.
    4. Marco Cirant & Davide Francesco Redaelli, 2025. "Some Remarks on Linear-Quadratic Closed-Loop Games with Many Players," Dynamic Games and Applications, Springer, vol. 15(2), pages 558-591, May.
    5. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Daria Ghilli & Cristiano Ricci & Giovanni Zanco, 2024. "A mean field game model for COVID-19 with human capital accumulation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 77(1), pages 533-560, February.
    7. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-467, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    8. Piotr Więcek, 2024. "Multiple-Population Discrete-Time Mean Field Games with Discounted and Total Payoffs: The Existence of Equilibria," Dynamic Games and Applications, Springer, vol. 14(4), pages 997-1026, September.
    9. Eduardo Abi Jaber & Eyal Neuman & Moritz Vo{ss}, 2023. "Equilibrium in Functional Stochastic Games with Mean-Field Interaction," Papers 2306.05433, arXiv.org, revised Feb 2024.
    10. Masaaki Fujii & Akihiko Takahashi, 2021. "``Equilibrium Price Formation with a Major Player and its Mean Field Limit''," CIRJE F-Series CIRJE-F-1162, CIRJE, Faculty of Economics, University of Tokyo.
    11. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," Papers 1911.11501, arXiv.org, revised Nov 2020.
    12. Diogo Gomes & João Saúde, 2014. "Mean Field Games Models—A Brief Survey," Dynamic Games and Applications, Springer, vol. 4(2), pages 110-154, June.
    13. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," Papers 2102.10756, arXiv.org, revised Feb 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    2. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    3. A. Bensoussan & K. Sung & S. Yam, 2013. "Linear–Quadratic Time-Inconsistent Mean Field Games," Dynamic Games and Applications, Springer, vol. 3(4), pages 537-552, December.
    4. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    5. Kashif Mehmood & Muhammad Tabish Niaz & Hyung Seok Kim, 2019. "A Power Control Mean Field Game Framework for Battery Lifetime Enhancement of Coexisting Machine-Type Communications," Energies, MDPI, vol. 12(20), pages 1-23, October.
    6. Ivan Cherednik, 2019. "Artificial intelligence approach to momentum risk-taking," Papers 1911.08448, arXiv.org, revised Mar 2020.
    7. Haoyang Cao & Jodi Dianetti & Giorgio Ferrari, 2021. "Stationary Discounted and Ergodic Mean Field Games of Singular Control," Papers 2105.07213, arXiv.org.
    8. Jin Ma & Eunjung Noh, 2020. "Equilibrium Model of Limit Order Books: A Mean-field Game View," Papers 2002.12857, arXiv.org, revised Mar 2020.
    9. Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean-Field Games with Differing Beliefs for Algorithmic Trading," Papers 1810.06101, arXiv.org, revised Dec 2019.
    10. Luke C. Brown & David M. Ambrose, 2025. "Equilibria in the Large-Scale Competition for Market Share in a Commodity with Resource-Buying," Dynamic Games and Applications, Springer, vol. 15(1), pages 48-73, March.
    11. Michael Ludkovski & Xuwei Yang, 2017. "Mean Field Game Approach to Production and Exploration of Exhaustible Commodities," Papers 1710.05131, arXiv.org.
    12. Philippe Casgrain & Sebastian Jaimungal, 2020. "Mean‐field games with differing beliefs for algorithmic trading," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 995-1034, July.
    13. Martin Frank & Michael Herty & Torsten Trimborn, 2019. "Microscopic Derivation of Mean Field Game Models," Papers 1910.13534, arXiv.org.
    14. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2021. "A statistical field approach to capital accumulation," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(4), pages 817-908, October.
    15. Qing Tang & Fabio Camilli, 2020. "Variational Time-Fractional Mean Field Games," Dynamic Games and Applications, Springer, vol. 10(2), pages 573-588, June.
    16. Minyi Huang, 2013. "A Mean Field Capital Accumulation Game with HARA Utility," Dynamic Games and Applications, Springer, vol. 3(4), pages 446-472, December.
    17. Benazzoli, Chiara & Campi, Luciano & Di Persio, Luca, 2019. "ε-Nash equilibrium in stochastic differential games with mean-field interaction and controlled jumps," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    18. Marcel Nutz & Yuchong Zhang, 2019. "A Mean Field Competition," Management Science, INFORMS, vol. 44(4), pages 1245-1263, November.
    19. Kalai, Ehud & Shmaya, Eran, 2018. "Large strategic dynamic interactions," Journal of Economic Theory, Elsevier, vol. 178(C), pages 59-81.
    20. Erhan Bayraktar & Yuchong Zhang, 2016. "A rank based mean field game in the strong formulation," Papers 1603.06312, arXiv.org, revised Oct 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:3:y:2013:i:4:p:523-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.