IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v15y2025i2d10.1007_s13235-024-00568-5.html
   My bibliography  Save this article

Some Remarks on Linear-Quadratic Closed-Loop Games with Many Players

Author

Listed:
  • Marco Cirant

    (Università degli Studi di Padova)

  • Davide Francesco Redaelli

    (Università degli Studi di Padova)

Abstract

We identify structural assumptions which provide solvability of the Nash system arising from a linear-quadratic closed-loop game, with stable properties with respect to the number of players. In a setting of interactions governed by a sparse graph, both short-time and long-time existence of a classical solution for the Nash system set in infinitely many dimensions are addressed, as well as convergence to the solution to the respective ergodic problem as the time horizon goes to infinity; in addition, equilibria for the infinite-dimensional game are shown to provide $$\epsilon $$ ϵ -Nash closed-loop equilibria for the N-player game. In a setting of generalized mean-field type (where the number of interactions is large but not necessarily symmetric), directly from the N-player Nash system estimates on the value functions are deduced on an arbitrary large time horizon, which should pave the way for a convergence result as N goes to infinity.

Suggested Citation

  • Marco Cirant & Davide Francesco Redaelli, 2025. "Some Remarks on Linear-Quadratic Closed-Loop Games with Many Players," Dynamic Games and Applications, Springer, vol. 15(2), pages 558-591, May.
  • Handle: RePEc:spr:dyngam:v:15:y:2025:i:2:d:10.1007_s13235-024-00568-5
    DOI: 10.1007/s13235-024-00568-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-024-00568-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-024-00568-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. A. Bensoussan & K. C. J. Sung & S. C. P. Yam & S. P. Yung, 2016. "Linear-Quadratic Mean Field Games," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 496-529, May.
    2. Erhan Bayraktar & Alekos Cecchin & Asaf Cohen & François Delarue, 2022. "Finite State Mean Field Games with Wright–Fisher Common Noise as Limits of N -Player Weighted Games," Mathematics of Operations Research, INFORMS, vol. 47(4), pages 2840-2890, November.
    3. Ermal Feleqi, 2013. "The Derivation of Ergodic Mean Field Game Equations for Several Populations of Players," Dynamic Games and Applications, Springer, vol. 3(4), pages 523-536, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Fu, Guanxing & Horst, Ulrich, 2017. "Mean Field Games with Singular Controls," Rationality and Competition Discussion Paper Series 22, CRC TRR 190 Rationality and Competition.
    3. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Ren'e Aid & Ofelia Bonesini & Giorgia Callegaro & Luciano Campi, 2021. "A McKean-Vlasov game of commodity production, consumption and trading," Papers 2111.04391, arXiv.org.
    5. Li-Hsien Sun, 2022. "Mean Field Games with Heterogeneous Groups: Application to Banking Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 130-167, January.
    6. Dianetti, Jodi & Ferrari, Giorgio & Fischer, Markus & Nendel, Max, 2022. "A Unifying Framework for Submodular Mean Field Games," Center for Mathematical Economics Working Papers 661, Center for Mathematical Economics, Bielefeld University.
    7. Li-Hsien Sun, 2018. "Systemic Risk and Interbank Lending," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 400-424, November.
    8. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," Papers 2102.10756, arXiv.org, revised Feb 2022.
    9. Dianetti, Jodi & Ferrari, Giorgio & Fischer, Markus & Nendel, Max, 2019. "Submodular Mean Field Games. Existence and Approximation of Solutions," Center for Mathematical Economics Working Papers 621, Center for Mathematical Economics, Bielefeld University.
    10. Matteo Basei & Huyên Pham, 2019. "A Weak Martingale Approach to Linear-Quadratic McKean–Vlasov Stochastic Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 347-382, May.
    11. Guohui Guan & Zongxia Liang & Yi Xia, 2024. "Many-insurer robust games of reinsurance and investment under model uncertainty in incomplete markets," Papers 2412.09157, arXiv.org.
    12. Ludovic Tangpi & Shichun Wang, 2022. "Optimal Bubble Riding: A Mean Field Game with Varying Entry Times," Papers 2209.04001, arXiv.org, revised Jan 2024.
    13. Yurii Averboukh & Aleksei Volkov, 2024. "Planning Problem for Continuous-Time Finite State Mean Field Game with Compact Action Space," Dynamic Games and Applications, Springer, vol. 14(2), pages 285-303, May.
    14. Xiaoli Wei & Xiang Yu & Fengyi Yuan, 2024. "Unified continuous-time q-learning for mean-field game and mean-field control problems," Papers 2407.04521, arXiv.org, revised Mar 2025.
    15. Haoyang Cao & Jodi Dianetti & Giorgio Ferrari, 2021. "Stationary Discounted and Ergodic Mean Field Games of Singular Control," Papers 2105.07213, arXiv.org.
    16. Daniel Lacker & Thaleia Zariphopoulou, 2017. "Mean field and n-agent games for optimal investment under relative performance criteria," Papers 1703.07685, arXiv.org, revised Jun 2018.
    17. Li-Hsien Sun, 2019. "Systemic Risk and Heterogeneous Mean Field Type Interbank Network," Papers 1907.03082, arXiv.org, revised Sep 2019.
    18. Shuzhen Yang, 2020. "Bellman type strategy for the continuous time mean-variance model," Papers 2005.01904, arXiv.org, revised Jul 2020.
    19. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," Papers 1911.11501, arXiv.org, revised Nov 2020.
    20. Diogo Gomes & João Saúde, 2014. "Mean Field Games Models—A Brief Survey," Dynamic Games and Applications, Springer, vol. 4(2), pages 110-154, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:15:y:2025:i:2:d:10.1007_s13235-024-00568-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.