IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v15y2025i1d10.1007_s13235-024-00563-w.html
   My bibliography  Save this article

Equilibria in the Large-Scale Competition for Market Share in a Commodity with Resource-Buying

Author

Listed:
  • Luke C. Brown

    (Drexel University)

  • David M. Ambrose

    (Drexel University)

Abstract

We study a mean field game model of Cournot/Bertrand competition between firms. Chan and Sircar introduced such a mean field model of competition in natural resource extraction. In their model, each firm has a finite reserve of a commodity and may choose to extract a positive quantity per unit time. We instead treat the situation in which firms compete to purchase raw materials, rather than produce the raw material. With this change, we arrive at the same nonlinear system of partial differential equations, but what corresponds to the positive rate of resource extraction in the Chan–Sircar model is instead negative in our setting. We prove existence of stationary solutions, using a Lyapunov–Schmidt decomposition and multiple applications of the implicit function theorem.

Suggested Citation

  • Luke C. Brown & David M. Ambrose, 2025. "Equilibria in the Large-Scale Competition for Market Share in a Commodity with Resource-Buying," Dynamic Games and Applications, Springer, vol. 15(1), pages 48-73, March.
  • Handle: RePEc:spr:dyngam:v:15:y:2025:i:1:d:10.1007_s13235-024-00563-w
    DOI: 10.1007/s13235-024-00563-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-024-00563-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-024-00563-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Olivier Guéant & Pierre Louis Lions & Jean-Michel Lasry, 2011. "Mean Field Games and Applications," Post-Print hal-01393103, HAL.
    2. Diogo A. Gomes & Levon Nurbekyan & Mariana Prazeres, 2018. "One-Dimensional Stationary Mean-Field Games with Local Coupling," Dynamic Games and Applications, Springer, vol. 8(2), pages 315-351, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    2. Lacker, Daniel, 2015. "Mean field games via controlled martingale problems: Existence of Markovian equilibria," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2856-2894.
    3. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    4. A. Bensoussan & K. Sung & S. Yam, 2013. "Linear–Quadratic Time-Inconsistent Mean Field Games," Dynamic Games and Applications, Springer, vol. 3(4), pages 537-552, December.
    5. A. Bensoussan & K. C. J. Sung & S. C. P. Yam & S. P. Yung, 2016. "Linear-Quadratic Mean Field Games," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 496-529, May.
    6. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    7. Chen, Enxian & Qiao, Lei & Sun, Xiang & Sun, Yeneng, 2022. "Robust perfect equilibrium in large games," Journal of Economic Theory, Elsevier, vol. 201(C).
    8. Berenice Anne Neumann, 2020. "Stationary Equilibria of Mean Field Games with Finite State and Action Space," Dynamic Games and Applications, Springer, vol. 10(4), pages 845-871, December.
    9. Matteo Basei & Huyên Pham, 2019. "A Weak Martingale Approach to Linear-Quadratic McKean–Vlasov Stochastic Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 347-382, May.
    10. Alberto Bressan & Khai T. Nguyen, 2023. "Generic Properties of First-Order Mean Field Games," Dynamic Games and Applications, Springer, vol. 13(3), pages 750-782, September.
    11. Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean Field Games with Partial Information for Algorithmic Trading," Papers 1803.04094, arXiv.org, revised Mar 2019.
    12. Yves Achdou & Pierre-Noël Giraud & Jean-Michel Lasry & Pierre Louis Lions, 2016. "A Long-Term Mathematical Model for Mining Industries," Post-Print hal-01412551, HAL.
    13. Kashif Mehmood & Muhammad Tabish Niaz & Hyung Seok Kim, 2019. "A Power Control Mean Field Game Framework for Battery Lifetime Enhancement of Coexisting Machine-Type Communications," Energies, MDPI, vol. 12(20), pages 1-23, October.
    14. Ivan Cherednik, 2019. "Artificial intelligence approach to momentum risk-taking," Papers 1911.08448, arXiv.org, revised Mar 2020.
    15. Haoyang Cao & Jodi Dianetti & Giorgio Ferrari, 2021. "Stationary Discounted and Ergodic Mean Field Games of Singular Control," Papers 2105.07213, arXiv.org.
    16. Neumann, Berenice Anne, 2022. "Essential stationary equilibria of mean field games with finite state and action space," Mathematical Social Sciences, Elsevier, vol. 120(C), pages 85-91.
    17. Zongxi Li & A. Max Reppen & Ronnie Sircar, 2019. "A Mean Field Games Model for Cryptocurrency Mining," Papers 1912.01952, arXiv.org, revised Jan 2022.
    18. Daniel Lacker & Thaleia Zariphopoulou, 2017. "Mean field and n-agent games for optimal investment under relative performance criteria," Papers 1703.07685, arXiv.org, revised Jun 2018.
    19. Jin Ma & Eunjung Noh, 2020. "Equilibrium Model of Limit Order Books: A Mean-field Game View," Papers 2002.12857, arXiv.org, revised Mar 2020.
    20. Philippe Casgrain & Sebastian Jaimungal, 2018. "Mean-Field Games with Differing Beliefs for Algorithmic Trading," Papers 1810.06101, arXiv.org, revised Dec 2019.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:15:y:2025:i:1:d:10.1007_s13235-024-00563-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.