IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v117y2018ipap101-116.html
   My bibliography  Save this article

Role of road network features in the evaluation of incident impacts on urban traffic mobility

Author

Listed:
  • Sun, Chenshuo
  • Pei, Xin
  • Hao, Junheng
  • Wang, Yewen
  • Zhang, Zuo
  • Wong, S.C.

Abstract

In this paper, we seek to investigate the spatiotemporal impacts of traffic incident on urban road networks. The theoretical lens of a complex network leads us to expect that incident impacts are associated with the functionality that an intersection acts in a network, and also, the location of incident sites. Incident impacts are measured in both temporal and spatial dimension through mining the large-scale traffic flow data in conjunction with the incident record. In the complex network context, the urban road network can be converted into a weighted direct graph with intersections as nodes and road segments as edges with their geographic information. Four network features, i.e., Betweenness Centrality, weighted PageRank, Hub, and K-shell are assigned to each intersection to measure its functionality. Temporally, we find out significant correlations between incident delay and two network features by applying hazard-based models. Spatially, the micro impact and the macro impact are found to be strongly associated with three network features through estimating a Bayesian Negative-binomial Conditional Autoregressive model and a generalized linear model, respectively. Our study provides the basis of leveraging urban road network context to evaluate incident impacts, with some explanations, insights and possible extensions that would assist traffic administrations to guide the post-incident resilience and emergency management.

Suggested Citation

  • Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
  • Handle: RePEc:eee:transb:v:117:y:2018:i:pa:p:101-116
    DOI: 10.1016/j.trb.2018.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518302716
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nam, Doohee & Mannering, Fred, 2000. "An exploratory hazard-based analysis of highway incident duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(2), pages 85-102, February.
    2. Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
    3. repec:eee:transb:v:99:y:2017:i:c:p:251-266 is not listed on IDEAS
    4. repec:eee:jotrge:v:42:y:2015:i:c:p:34-47 is not listed on IDEAS
    5. Sheu, Jiuh-Biing & Chou, Yi-Hwa & Shen, Liang-Jen, 2001. "A stochastic estimation approach to real-time prediction of incident effects on freeway traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 575-592, July.
    6. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    7. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    8. Zhou, Yiwei & Wang, Xiaokun & Holguín-Veras, José, 2016. "Discrete choice with spatial correlation: A spatial autoregressive binary probit model with endogenous weight matrix (SARBP-EWM)," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 440-455.
    9. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:117:y:2018:i:pa:p:101-116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.