IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006269.html
   My bibliography  Save this article

Probabilistic scenario analysis of integrated road-power infrastructures with hybrid fleets of EVs and ICVs

Author

Listed:
  • Naseh Moghanlou, Lida
  • Di Maio, Francesco
  • Zio, Enrico

Abstract

Electric Vehicles (EVs) are key contributors to the reduction of CO2 emissions. However, reliance on EVs must come with the guarantee that the integrated road-power infrastructure is capable of providing adequate mobility serviceability, even in case of disruption due to accidents or disturbances due to traffic jams. In this paper, we propose a probabilistic scenario analysis framework to quantify service losses in terms of delays that vehicles (both EVs and Internal Combustion Vehicles (ICVs)) may incur due to different car accident scenarios. The framework is based on modelling the System of Systems (SoS) comprised by road network, electric power system and vehicles, with graph theory and Finite State Machines (FSMs), respectively, and then embedding the model within a probabilistic scenario analysis, wherein meaningful disruption scenarios are sampled, service losses are measured (specifically as the ratio between the increase in travel time spent along the origin-destination routes on the road network following a disruption, and the corresponding travel time in nominal traffic conditions), and the economic losses and transport reliability of the infrastructure are assessed. To exemplify the application of the framework, we consider a benchmark road-power infrastructure in New York state travelled by a mixed fleet of EVs and ICVs, with different EVs penetration levels and under car accidental scenarios of different magnitudes. By using the insightful graphical representation of the results in terms of traffic volume across different road sections, the framework allows comparing alternative road-power infrastructure designs (e.g., critical roads, optimal gas and charging station locations, power network structure and topology, …) with respect to travel times, economic service losses and transport reliability considering different nominal and disruption scenarios under different EVs penetration levels service.

Suggested Citation

  • Naseh Moghanlou, Lida & Di Maio, Francesco & Zio, Enrico, 2024. "Probabilistic scenario analysis of integrated road-power infrastructures with hybrid fleets of EVs and ICVs," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006269
    DOI: 10.1016/j.ress.2023.109712
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.