IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v170y2018icp116-126.html

Combined effects of load dynamics and dependence clusters on cascading failures in network systems

Author

Listed:
  • Zhou, Jian
  • Huang, Ning
  • Coit, David W.
  • Felder, Frank A.

Abstract

A new model has been developed to analyze mixed cascading failures in network systems. The new model offers distinct advantages to analyze the combined impact of network load dynamics and network dependency on failure propagation, and to investigate specific effects of common types of network dependency on network robustness. Previous cascading failure models, focusing on network load dynamics, provide alternative approaches to analyze cascading failures in network systems. However, these studies seldom consider the combined impacts of multiple dependencies among network nodes, which can actually have a great impact on the dynamic behaviors of network systems. Thus, our new model extends previous research by taking both load dynamics and network dependency into account. Using this new model, existing mixed cascading failures can be simulated, and the influence of different types of dependence clusters of network nodes on the robustness of network systems can also be studied. The effects of network topology on network robustness considering mixed cascading failures are also investigated using numerical examples.

Suggested Citation

  • Zhou, Jian & Huang, Ning & Coit, David W. & Felder, Frank A., 2018. "Combined effects of load dynamics and dependence clusters on cascading failures in network systems," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 116-126.
  • Handle: RePEc:eee:reensy:v:170:y:2018:i:c:p:116-126
    DOI: 10.1016/j.ress.2017.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017301473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Ren, Hai-Peng & Song, Jihong & Yang, Rong & Baptista, Murilo S. & Grebogi, Celso, 2016. "Cascade failure analysis of power grid using new load distribution law and node removal rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 239-251.
    3. R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
    4. Zio, Enrico & Piccinelli, Roberta, 2010. "Randomized flow model and centrality measure for electrical power transmission network analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 379-385.
    5. Wu, Wei-wei & Ning, Angelika & Ning, Xuan-xi, 2008. "Evaluation of the reliability of transport networks based on the stochastic flow of moving objects," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 838-844.
    6. Zio, E. & Ferrario, E., 2013. "A framework for the system-of-systems analysis of the risk for a safety-critical plant exposed to external events," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 114-125.
    7. Zhang, Ding-Xue & Zhao, Dan & Guan, Zhi-Hong & Wu, Yonghong & Chi, Ming & Zheng, Gui-Lin, 2016. "Probabilistic analysis of cascade failure dynamics in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 299-309.
    8. V. Rosato & L. Issacharoff & F. Tiriticco & S. Meloni & S. De Porcellinis & R. Setola, 2008. "Modelling interdependent infrastructures using interacting dynamical models," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 63-79.
    9. Li, Daqing & Zhang, Qiong & Zio, Enrico & Havlin, Shlomo & Kang, Rui, 2015. "Network reliability analysis based on percolation theory," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 556-562.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    2. Li, Daqing & Zhang, Qiong & Zio, Enrico & Havlin, Shlomo & Kang, Rui, 2015. "Network reliability analysis based on percolation theory," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 556-562.
    3. Zhou, Jian & Coit, David W. & Felder, Frank A. & Wang, Dali, 2021. "Resiliency-based restoration optimization for dependent network systems against cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    6. Wang, Jianwei & He, Rouye & Sun, Haozhe & He, Haofan, 2025. "Cascading dynamics on coupled networks with load-capacity interplay and concurrent recovery-failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
    7. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    9. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    10. Chao Zhang & Jingjing Kong & Slobodan P Simonovic, 2018. "Modeling joint restoration strategies for interdependent infrastructure systems," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-18, April.
    11. Jia, Chuanzhou & Zhang, Chi & Li, Yan-Fu & Li, Quan-Lin, 2023. "Joint pre- and post-disaster planning to enhance the resilience of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Tiong, Achara & Vergara, Hector A., 2023. "Evaluation of network expansion decisions for resilient interdependent critical infrastructures with different topologies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    13. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    14. Guo, Wenzhang & Wang, Hao & Wu, Zhengping, 2018. "Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 186-199.
    15. Zhou, Jian & Coit, David W. & Felder, Frank A. & Tsianikas, Stamatis, 2023. "Combined optimization of system reliability improvement and resilience with mixed cascading failures in dependent network systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Kaul, Hemanshu & Rumpf, Adam, 2022. "A linear input dependence model for interdependent networks," European Journal of Operational Research, Elsevier, vol. 302(2), pages 781-797.
    17. Reilly, Allison C. & Baroud, Hiba & Flage, Roger & Gerst, Michael D., 2021. "Sources of uncertainty in interdependent infrastructure and their implications," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Vaibhav Gaur & Om Prakash Yadav & Gunjan Soni & Ajay Pal Singh Rathore, 2021. "A literature review on network reliability analysis and its engineering applications," Journal of Risk and Reliability, , vol. 235(2), pages 167-181, April.
    19. Farahmand, Hamed & Liu, Xueming & Dong, Shangjia & Mostafavi, Ali & Gao, Jianxi, 2022. "A Network Observability Framework for Sensor Placement in Flood Control Networks to Improve Flood Situational Awareness and Risk Management," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Ouyang, Min & Dueñas-Osorio, Leonardo, 2011. "An approach to design interface topologies across interdependent urban infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1462-1473.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:170:y:2018:i:c:p:116-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.