IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0195727.html
   My bibliography  Save this article

Modeling joint restoration strategies for interdependent infrastructure systems

Author

Listed:
  • Chao Zhang
  • Jingjing Kong
  • Slobodan P Simonovic

Abstract

Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.

Suggested Citation

  • Chao Zhang & Jingjing Kong & Slobodan P Simonovic, 2018. "Modeling joint restoration strategies for interdependent infrastructure systems," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-18, April.
  • Handle: RePEc:plo:pone00:0195727
    DOI: 10.1371/journal.pone.0195727
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195727
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0195727&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0195727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Patterson, S.A. & Apostolakis, G.E., 2007. "Identification of critical locations across multiple infrastructures for terrorist actions," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1183-1203.
    3. Emily A. Heath & John E. Mitchell & Thomas C. Sharkey, 2016. "Applying ranking and selection procedures to long-term mitigation for improved network restoration," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 447-481, September.
    4. Jean-Francois Castet & Joseph H Saleh, 2013. "Interdependent Multi-Layer Networks: Modeling and Survivability Analysis with Applications to Space-Based Networks," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-13, April.
    5. Cameron A. MacKenzie & Hiba Baroud & Kash Barker, 2016. "Static and dynamic resource allocation models for recovery of interdependent systems: application to the Deepwater Horizon oil spill," Annals of Operations Research, Springer, vol. 236(1), pages 103-129, January.
    6. Nurre, Sarah G. & Cavdaroglu, Burak & Mitchell, John E. & Sharkey, Thomas C. & Wallace, William A., 2012. "Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem," European Journal of Operational Research, Elsevier, vol. 223(3), pages 794-806.
    7. Cameron MacKenzie & Hiba Baroud & Kash Barker, 2016. "Static and dynamic resource allocation models for recovery of interdependent systems: application to the Deepwater Horizon oil spill," Annals of Operations Research, Springer, vol. 236(1), pages 103-129, January.
    8. Burak Cavdaroglu & Erik Hammel & John Mitchell & Thomas Sharkey & William Wallace, 2013. "Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems," Annals of Operations Research, Springer, vol. 203(1), pages 279-294, March.
    9. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    10. R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
    11. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    12. Eric D. Vugrin & Mark A. Turnquist & Nathanael J.K. Brown, 2014. "Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 10(3/4), pages 218-246.
    13. Yiping Fang & Nicola Pedroni & Enrico Zio, 2015. "Optimization of Cascade‐Resilient Electrical Infrastructures and its Validation by Power Flow Modeling," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 594-607, April.
    14. Cui, Pengshuai & Zhu, Peidong & Shao, Chengcheng & Xun, Peng, 2017. "Cascading failures in interdependent networks due to insufficient received support capability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 777-788.
    15. Chaoran Liu & Daqing Li & Enrico Zio & Rui Kang, 2014. "A Modeling Framework for System Restoration from Cascading Failures," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    2. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    3. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Kong, Jingjing & Zhang, Chao & Simonovic, Slobodan P., 2021. "Optimizing the resilience of interdependent infrastructures to regional natural hazards with combined improvement measures," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    5. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Sequential Hazards Resilience of Interdependent Infrastructure System: A Case Study of Greater Toronto Area Energy Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1141-1168, May.
    6. Jingjing Kong & Chao Zhang & Slobodan P. Simonovic, 2019. "A Two-Stage Restoration Resource Allocation Model for Enhancing the Resilience of Interdependent Infrastructure Systems," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    7. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    3. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    4. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    5. Kaul, Hemanshu & Rumpf, Adam, 2022. "A linear input dependence model for interdependent networks," European Journal of Operational Research, Elsevier, vol. 302(2), pages 781-797.
    6. Canbilen Sütiçen, Tuğçe & Batun, Sakine & Çelik, Melih, 2023. "Integrated reinforcement and repair of interdependent infrastructure networks under disaster-related uncertainties," European Journal of Operational Research, Elsevier, vol. 308(1), pages 369-384.
    7. Yasser Almoghathawi & Andrés D. González & Kash Barker, 2021. "Exploring Recovery Strategies for Optimal Interdependent Infrastructure Network Resilience," Networks and Spatial Economics, Springer, vol. 21(1), pages 229-260, March.
    8. Almoghathawi, Yasser & Selim, Shokri & Barker, Kash, 2023. "Community structure recovery optimization for partial disruption, functionality, and restoration in interdependent networks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    10. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.
    11. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    12. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    13. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    14. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    15. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Kim, Dong Hwan & Eisenberg, Daniel A. & Chun, Yeong Han & Park, Jeryang, 2017. "Network topology and resilience analysis of South Korean power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 13-24.
    17. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    18. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    20. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0195727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.