IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v80y2015icp307-319.html
   My bibliography  Save this article

A problem of limited-access special lanes. Part I: Spatiotemporal studies of real freeway traffic

Author

Listed:
  • Cassidy, Michael J.
  • Kim, Kwangho
  • Ni, Wei
  • Gu, Weihua

Abstract

Most special-use freeway lanes in the US, whether reserved for carpools, toll-paying commuters or both, are physically separated from the adjacent regular-use lanes by some form of barrier. Vehicle movements in and out of a special lane of this type are permitted only at select access points along the route. The barrier at each select point might open for a distance of 400m or so. Limiting access in this way is said to reduce the “turbulence” that might otherwise occur were the special lane not to have a barrier, such that vehicles could instead enter or exit that lane anywhere along its length.

Suggested Citation

  • Cassidy, Michael J. & Kim, Kwangho & Ni, Wei & Gu, Weihua, 2015. "A problem of limited-access special lanes. Part I: Spatiotemporal studies of real freeway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 307-319.
  • Handle: RePEc:eee:transa:v:80:y:2015:i:c:p:307-319
    DOI: 10.1016/j.tra.2015.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415001834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jang, Kitae & Cassidy, Michael J., 2012. "Dual influences on vehicle speed in special-use lanes and critique of US regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1108-1123.
    2. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    3. Michael J. Cassidy & Carlos F. Daganzo & Kitae Jang & Koohong Chung, 2009. "Spatiotemporal Effects of Segregating Different Vehicle Classes on Separate Lanes," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 57-74, Springer.
    4. Menendez, Monica & Daganzo, Carlos F., 2007. "Effects of HOV lanes on freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 809-822, October.
    5. Cassidy, Michael J & Kim, Kwangho, 2015. "Spatiotemporal Studies of Traffic Phenomenon on Freeways with Limited-access Special Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8j0585hg, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lapardhaja, Servet & Jalota, Devansh & Doig, Jean & Almubarak, Abdullah & Cassidy, Michael, 2021. "Testing alternative treatments for underused carpool lanes on narrow freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 139-149.
    2. Horowitz, Roberto & Kurzhanskiy, Alex A. & Wright, Mathew, 2018. "HOT Lane Simulation Tools," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4ff207ng, Institute of Transportation Studies, UC Berkeley.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cassidy, Michael J. & Kim, Kwangho & Ni, Wei & Gu, Weihua, 2015. "A problem of limited-access special lanes. Part II: Exploring remedies via simulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 320-329.
    2. Jang, Kitae & Cassidy, Michael J., 2012. "Dual influences on vehicle speed in special-use lanes and critique of US regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1108-1123.
    3. Jang, Kitae & Cassidy, Michael J., 2011. "Dual Influences on Vehicle Speeds in Special-Use Lanes and Policy Implications," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0dd859tf, Institute of Transportation Studies, UC Berkeley.
    4. Lapardhaja, Servet & Jalota, Devansh & Doig, Jean & Almubarak, Abdullah & Cassidy, Michael, 2021. "Testing alternative treatments for underused carpool lanes on narrow freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 139-149.
    5. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    6. Guler, Ilgin & Cassidy, Michael, 2010. "Deploying Underutilized Bus Lanes at Key Nodes in a Road Network," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3fh273s9, Institute of Transportation Studies, UC Berkeley.
    7. Shan, Xiaonian & Hao, Peng & Boriboonsomsin, Kanok & Wu, Guoyuan & Barth, Matthew & Chen, Xiaohong, 2018. "Partially limited access control design for special-use freeway lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 25-37.
    8. Davis, L.C., 2012. "Mitigation of congestion at a traffic bottleneck with diversion and lane restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1679-1691.
    9. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    10. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    11. Mogens Fosgerau & Kurt Van Dender, 2013. "Road pricing with complications," Transportation, Springer, vol. 40(3), pages 479-503, May.
    12. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan & Stephan, Konrad, 2021. "Optimizing carpool formation along high-occupancy vehicle lanes," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1097-1112.
    13. Guler, S. Ilgin & Cassidy, Michael J., 2012. "Strategies for sharing bottleneck capacity among buses and cars," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1334-1345.
    14. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    15. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    16. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae, 2008. "Spatiotemporal Effects of Segregating Different Vehicle Classes on Separate Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6c69j2vv, Institute of Transportation Studies, UC Berkeley.
    17. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    18. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    19. Nima Dadashzadeh & Murat Ergun, 2018. "Spatial bus priority schemes, implementation challenges and needs: an overview and directions for future studies," Public Transport, Springer, vol. 10(3), pages 545-570, December.
    20. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:80:y:2015:i:c:p:307-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.