IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v169y2023ics0965856422003317.html
   My bibliography  Save this article

Integrating parcel deliveries into a ride-pooling service—An agent-based simulation study

Author

Listed:
  • Fehn, Fabian
  • Engelhardt, Roman
  • Dandl, Florian
  • Bogenberger, Klaus
  • Busch, Fritz

Abstract

This paper examines the integration of freight delivery into the passenger transport of an on-demand ride-pooling service. The goal of this research is to use existing passenger trips for logistics services and thus reduce additional vehicle kilometers for freight delivery and the total number of vehicles on the road network. This is achieved by merging the need for two separate fleets into a single one by combining the services. This research provides an extensive literature review and discusses policy measures supporting such a service. To evaluate the potential of such a mobility-on-demand service, this paper uses an agent-based simulation framework and integrates three heuristic parcel assignment strategies into a ride-pooling fleet control algorithm. Two integration scenarios (moderate and full) are set up. While in both scenarios passengers and parcels share rides in one vehicle, in the moderate scenario no stops for parcel pick-up and delivery are allowed during a passenger ride to decrease customer inconvenience. Using real-world demand data for a case study of Munich, Germany, the two integration scenarios together with the three assignment strategies are compared to the status quo, which uses two separate vehicle fleets for passenger and logistics transport. The results indicate that the integration of logistics services into a ride-pooling service is possible and can exploit unused system capacities without deteriorating passenger transportation. Depending on the assignment strategies nearly all parcels can be served until a parcel to passenger demand ratio of 1:10 while the overall fleet kilometers can be decreased compared to the status quo.

Suggested Citation

  • Fehn, Fabian & Engelhardt, Roman & Dandl, Florian & Bogenberger, Klaus & Busch, Fritz, 2023. "Integrating parcel deliveries into a ride-pooling service—An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:transa:v:169:y:2023:i:c:s0965856422003317
    DOI: 10.1016/j.tra.2022.103580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856422003317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.103580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    2. Li, Zhujun & Shalaby, Amer & Roorda, Matthew J. & Mao, Baohua, 2021. "Urban rail service design for collaborative passenger and freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    3. Katrien De Langhe & Hilde Meersman & Christa Sys & Eddy Van de Voorde & Thierry Vanelslander, 2019. "How to make urban freight transport by tram successful?," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-23, December.
    4. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    5. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.
    6. Liu, Chengxi & Wang, Qian & Susilo, Yusak O., 2019. "Assessing the impacts of collection-delivery points to individual’s activity-travel patterns: A greener last mile alternative?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 84-99.
    7. Martin Pernkopf & Manfred Gronalt, 2021. "An aerial ropeway transportation system for combined freight and passenger transport – a simulation study," Transportation Planning and Technology, Taylor & Francis Journals, vol. 44(1), pages 45-62, January.
    8. Chao Chen & Shenle Pan, 2015. "Using the Crowd of Taxis to Last Mile Delivery in E-commerce: a Methodological Research," Post-Print hal-01226813, HAL.
    9. Stefan Gössling & Marcel Schröder & Philipp Späth & Tim Freytag, 2016. "Urban Space Distribution and Sustainable Transport," Transport Reviews, Taylor & Francis Journals, vol. 36(5), pages 659-679, September.
    10. Florian Dandl & Michael Hyland & Klaus Bogenberger & Hani S. Mahmassani, 2019. "Evaluating the impact of spatio-temporal demand forecast aggregation on the operational performance of shared autonomous mobility fleets," Transportation, Springer, vol. 46(6), pages 1975-1996, December.
    11. Bruzzone, Francesco & Cavallaro, Federico & Nocera, Silvio, 2021. "The integration of passenger and freight transport for first-last mile operations," Transport Policy, Elsevier, vol. 100(C), pages 31-48.
    12. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    13. Li, Baoxiang & Krushinsky, Dmitry & Reijers, Hajo A. & Van Woensel, Tom, 2014. "The Share-a-Ride Problem: People and parcels sharing taxis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 31-40.
    14. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    2. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    3. Hörsting, Lena & Cleophas, Catherine, 2023. "Scheduling shared passenger and freight transport on a fixed infrastructure," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1158-1169.
    4. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    5. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    6. Feng, Wenhao & Tanimoto, Keishi & Chosokabe, Madoka, 2023. "Feasibility analysis of freight-passenger integration using taxis in rural areas by a mixed-integer programming model," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    7. Hu, Wanjie & Dong, Jianjun & Hwang, Bon-Gang & Ren, Rui & Chen, Zhilong, 2022. "Is mass rapid transit applicable for deep integration of freight-passenger transport? A multi-perspective analysis from urban China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 490-510.
    8. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    9. Han Zhang & Yongbo Lv & Jianwei Guo, 2022. "New Development Direction of Underground Logistics from the Perspective of Public Transport: A Systematic Review Based on Scientometrics," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    10. Machado, Bruno & Pimentel, Carina & Sousa, Amaro de, 2023. "Integration planning of freight deliveries into passenger bus networks: Exact and heuristic algorithms," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    11. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou, 2022. "On understanding the impacts of shared public transportation on urban traffic and road safety using an agent-based simulation with heterogeneous fleets: a case study of Casablanca city," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 3893-3932, December.
    12. Patricija Bajec & Danijela Tuljak-Suban, 2022. "A Strategic Approach for Promoting Sustainable Crowdshipping in Last-Mile Deliveries," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    13. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    14. Al-Kanj, Lina & Nascimento, Juliana & Powell, Warren B., 2020. "Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1088-1106.
    15. Junyu Cao & Mariana Olvera-Cravioto & Zuo-Jun (Max) Shen, 2020. "Last-Mile Shared Delivery: A Discrete Sequential Packing Approach," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1466-1497, November.
    16. Fontaine, Pirmin & Minner, Stefan & Schiffer, Maximilian, 2023. "Smart and sustainable city logistics: Design, consolidation, and regulation," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1071-1084.
    17. Cavallaro, Federico & Nocera, Silvio, 2023. "Flexible-route integrated passenger–freight transport in rural areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    18. Mofidi, Seyed Shahab & Pazour, Jennifer A., 2019. "When is it beneficial to provide freelance suppliers with choice? A hierarchical approach for peer-to-peer logistics platforms," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 1-23.
    19. Leonor Teixeira & Ana Luísa Ramos & Carolina Costa & Dulce Pedrosa & César Faria & Carina Pimentel, 2023. "SOLFI: An Integrated Platform for Sustainable Urban Last-Mile Logistics’ Operations—Study, Design and Development," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    20. Boysen, Nils & Emde, Simon & Schwerdfeger, Stefan, 2022. "Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand," European Journal of Operational Research, Elsevier, vol. 296(2), pages 539-556.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:169:y:2023:i:c:s0965856422003317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.