IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v159y2024icp157-177.html
   My bibliography  Save this article

Optimizing an express delivery mode based on high-speed railway and crowd-couriers

Author

Listed:
  • Wang, Xiuwen
  • Zhen, Lu
  • Wang, Shuaian

Abstract

The rapid development of e-commerce has led to various challenges in the express delivery industry. To provide efficient and economical delivery services, this study introduces a joint transportation system for parcel delivery utilizing high-speed railway (HSR) and crowd-couriers. In this system, long-haul transportation between cities is conducted by HSR, which enables multiple transshipments in different operation lines. The pre-haul parcel pickup and end-haul delivery services within the city are performed by crowd-couriers, thus achieving door-to-door transportation. A mathematical model is developed to jointly optimize the freight allocation problem in the rail segment and the crowd-courier routing problem in the road segment. The freight allocation problem is formulated based on the concept of transportation plans. The transportation plans with and without transshipments are found by a depth-first search-based algorithm in the rail segment. A customized heuristic algorithm based on the adaptive large neighborhood search with multiple operators is designed to find a near-optimal solution. A set of numerical experiments demonstrates the speed and accuracy with which the proposed method solves different-sized versions of problem. A sensitivity analysis based on a real HSR network is also conducted to provide more reliable managerial insights for operators.

Suggested Citation

  • Wang, Xiuwen & Zhen, Lu & Wang, Shuaian, 2024. "Optimizing an express delivery mode based on high-speed railway and crowd-couriers," Transport Policy, Elsevier, vol. 159(C), pages 157-177.
  • Handle: RePEc:eee:trapol:v:159:y:2024:i:c:p:157-177
    DOI: 10.1016/j.tranpol.2024.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24002841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Heinold, Arne & Meisel, Frank, 2020. "Emission limits and emission allocation schemes in intermodal freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Renaud Masson & Anna Trentini & Fabien Lehuédé & Nicolas Malhéné & Olivier Péton & Houda Tlahig, 2017. "Optimization of a city logistics transportation system with mixed passengers and goods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 81-109, March.
    4. Zhen, Lu & Fan, Tianyi & Li, Haolin & Wang, Shuaian & Tan, Zheyi, 2023. "An optimization model for express delivery with high-speed railway," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    5. Lu Zhen & Wenya Lv & Kai Wang & Chengle Ma & Ziheng Xu, 2020. "Consistent vehicle routing problem with simultaneous distribution and collection," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 813-830, May.
    6. Ozturk, Onur & Patrick, Jonathan, 2018. "An optimization model for freight transport using urban rail transit," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1110-1121.
    7. Delle Donne, Diego & Alfandari, Laurent & Archetti, Claudia & Ljubić, Ivana, 2023. "Freight-on-Transit for urban last-mile deliveries: A strategic planning approach," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 53-81.
    8. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    9. Wang, Yuan & Lei, Linfei & Zhang, Dongxiang & Lee, Loo Hay, 2020. "Towards delivery-as-a-service: Effective neighborhood search strategies for integrated delivery optimization of E-commerce and static O2O parcels," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 38-63.
    10. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    11. Zhen, Lu & Ma, Chengle & Wang, Kai & Xiao, Liyang & Zhang, Wei, 2020. "Multi-depot multi-trip vehicle routing problem with time windows and release dates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    12. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    13. Orenstein, Ido & Raviv, Tal, 2022. "Parcel delivery using the hyperconnected service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    14. Xiao, Haohan & Xu, Min & Wang, Shuaian, 2023. "Crowd-shipping as a Service: Game-based operating strategy design and analysis," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    15. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    16. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Yi, Wen, 2021. "Crowdsourcing mode evaluation for parcel delivery service platforms," International Journal of Production Economics, Elsevier, vol. 235(C).
    17. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    18. Ghaderi, Hadi & Zhang, Lele & Tsai, Pei-Wei & Woo, Jihoon, 2022. "Crowdsourced last-mile delivery with parcel lockers," International Journal of Production Economics, Elsevier, vol. 251(C).
    19. Wolfinger, David & Salazar-González, Juan-José, 2021. "The Pickup and Delivery Problem with Split Loads and Transshipments: A Branch-and-Cut Solution Approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 470-484.
    20. Archetti, Claudia & Savelsbergh, Martin & Speranza, M. Grazia, 2016. "The Vehicle Routing Problem with Occasional Drivers," European Journal of Operational Research, Elsevier, vol. 254(2), pages 472-480.
    21. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    22. Bi, Mingkai & He, Shiwei & Xu, Wangtu (Ato), 2019. "Express delivery with high-speed railway: Definitely feasible or just a publicity stunt," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 165-187.
    23. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    3. Yang, Xuan & Kong, Xiang T.R. & Huang, George Q., 2024. "Synchronizing crowdsourced co-modality between passenger and freight transportation services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    4. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    5. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    6. Yang, Dingtong & Hyland, Michael F. & Jayakrishnan, R., 2024. "Tackling the crowdsourced shared-trip delivery problem at scale with a novel decomposition heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    7. Martin Savelsbergh & Marlin W. Ulmer, 2024. "Challenges and opportunities in crowdsourced delivery planning and operations—an update," Annals of Operations Research, Springer, vol. 343(2), pages 639-661, December.
    8. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    9. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    10. Martin W.P Savelsbergh & Marlin W. Ulmer, 2022. "Challenges and opportunities in crowdsourced delivery planning and operations," 4OR, Springer, vol. 20(1), pages 1-21, March.
    11. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Yi, Wen, 2021. "Crowdsourcing mode evaluation for parcel delivery service platforms," International Journal of Production Economics, Elsevier, vol. 235(C).
    12. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    13. Han Zhang & Yongbo Lv & Jianwei Guo, 2022. "New Development Direction of Underground Logistics from the Perspective of Public Transport: A Systematic Review Based on Scientometrics," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    14. Zhang, Yundi & Hu, Rong & Chen, Ruotian & Cai, Dong-ling & Jiang, Changmin, 2024. "Competition in cargo and passenger between high-speed rail and airlines—considering the vertical structure of transportation," Transport Policy, Elsevier, vol. 151(C), pages 120-133.
    15. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    16. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    17. Bathke, Henrik & Hartmann, Evi, 2021. "Accepting a crowdsourced delivery - A choice-based conjoint analysis," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 65-95, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    18. Li, Qilong & Xiao, Haohan & Xu, Min & Qu, Ting, 2024. "Investigating the impact of late deliveries on the operations of the crowd-shipping platform: A mean-variance analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    19. Delle Donne, Diego & Alfandari, Laurent & Archetti, Claudia & Ljubić, Ivana, 2023. "Freight-on-Transit for urban last-mile deliveries: A strategic planning approach," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 53-81.
    20. Stokkink, Patrick & Cordeau, Jean-François & Geroliminis, Nikolas, 2024. "A column and row generation approach to the crowd-shipping problem with transfers," Omega, Elsevier, vol. 128(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:159:y:2024:i:c:p:157-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.