IDEAS home Printed from https://ideas.repec.org/a/taf/tjorxx/v71y2020i5p813-830.html
   My bibliography  Save this article

Consistent vehicle routing problem with simultaneous distribution and collection

Author

Listed:
  • Lu Zhen
  • Wenya Lv
  • Kai Wang
  • Chengle Ma
  • Ziheng Xu

Abstract

To improve customer service in the reverse logistics, this article defines a new variant of the vehicle routing problem (VRP) by combining the consistent VRP (ConVRP) and the VRP with simultaneous distribution and collection (VRPSDC). This new variant is called the consistent vehicle routing problem with simultaneous distribution and collection, for which a mixed-integer programming model is formulated. To solve this problem, three heuristics are proposed on the basis of the record-to-record (RTR) travel algorithm, the local search with variable neighbourhood search (LSVNS), and the tabu search-based method. Numerical experiments are performed to validate the efficiency of our proposed solution methods and the effectiveness of the proposed model. The results show that the RTR-based heuristic has an advantage in small-scale instances. However, for medium-scale instances, the best option is the LSVNS-based heuristic, which can solve instances with 40 customers and 5 days within 10 s. Moreover, the LSVNS-based heuristic can solve large-scale instances with 200 customers and 5 days 3 hours.

Suggested Citation

  • Lu Zhen & Wenya Lv & Kai Wang & Chengle Ma & Ziheng Xu, 2020. "Consistent vehicle routing problem with simultaneous distribution and collection," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 813-830, May.
  • Handle: RePEc:taf:tjorxx:v:71:y:2020:i:5:p:813-830
    DOI: 10.1080/01605682.2019.1590134
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01605682.2019.1590134
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01605682.2019.1590134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen, Lu & Gao, Jiajing & Tan, Zheyi & Laporte, Gilbert & Baldacci, Roberto, 2023. "Territorial design for customers with demand frequency," European Journal of Operational Research, Elsevier, vol. 309(1), pages 82-101.
    2. Mehrnaz Bathaee & Hamed Nozari & Agnieszka Szmelter-Jarosz, 2023. "Designing a New Location-Allocation and Routing Model with Simultaneous Pick-Up and Delivery in a Closed-Loop Supply Chain Network under Uncertainty," Logistics, MDPI, vol. 7(1), pages 1-33, January.
    3. Md Saiful Islam & Md Sarowar Morshed & Md. Noor-E-Alam, 2022. "A Computational Framework for Solving Nonlinear Binary Optimization Problems in Robust Causal Inference," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3023-3041, November.
    4. Cui, Weiwei & Yang, Yiran & Di, Lei, 2023. "Modeling and optimization for static-dynamic routing of a vehicle with additive manufacturing equipment," International Journal of Production Economics, Elsevier, vol. 257(C).
    5. Cherkesly, Marilène & Gschwind, Timo, 2022. "The pickup and delivery problem with time windows, multiple stacks, and handling operations," European Journal of Operational Research, Elsevier, vol. 301(2), pages 647-666.
    6. Mohammed Alkahtani & Aiman Ziout & Bashir Salah & Moath Alatefi & Abd Elatty E. Abd Elgawad & Ahmed Badwelan & Umar Syarif, 2021. "An Insight into Reverse Logistics with a Focus on Collection Systems," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    7. Lei Chen & Haiyan Ma & Yi Wang & Feng Li, 2022. "Vehicle Routing Problem for the Simultaneous Pickup and Delivery of Lithium Batteries of Small Power Vehicles under Charging and Swapping Mode," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    8. Zhou, Jian & Li, Hui & Gu, Yujie & Zhao, Mingxuan & Xie, Xuehui & Zheng, Haoran & Fang, Xinghua, 2021. "A novel two-phase approach for the bi-objective simultaneous delivery and pickup problem with fuzzy pickup demands," International Journal of Production Economics, Elsevier, vol. 234(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:71:y:2020:i:5:p:813-830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.