IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v171y2023ics0965856423000654.html
   My bibliography  Save this article

Integration planning of freight deliveries into passenger bus networks: Exact and heuristic algorithms

Author

Listed:
  • Machado, Bruno
  • Pimentel, Carina
  • Sousa, Amaro de

Abstract

With the increasing population living in cities, a growing number of small daily urban freight deliveries are performed, typically by private companies. Recently, more environmentally friendly urban logistics services have emerged to mitigate the negative effects of such activities. One example is the integration of freight deliveries into bus networks, traditionally dedicated to passenger transportation, to perform urban logistics activities within cities. In this paper, the integration of the freight delivery process into the urban bus passenger network is addressed where freight parcels are dropped by clients at bus hubs located outside the city center, transported by bus services from the hub to bus stops located in the city center, and delivered to the destination address by a last mile operator. Since bus vehicles supporting both passenger and freight flows need to be physically adapted, the aim is to support the decision-maker to select the minimum number of bus services that must be adapted for freight transportation. The optimization problem considers the freight demand uncertainty in terms of number of freight parcels, destination address, delivery time windows and last mile operator constraints which are modelled by a set of demand scenarios. An exact method based on an integer linear programming (ILP) and two heuristic algorithms based on a greedy randomized adaptive search procedure (GRASP) are proposed. The results show that the proposed optimization methods are efficient, giving valuable insights to stakeholders, in the fields of policy and practice, for the strategic decision of selecting the minimum number of buses to be physically adapted for freight transportation. In particular, the results show that all proposed optimization methods are of interest in practice since the type of problem instances for which each method is more efficient is clearly identified in the obtained computational results. Moreover, in the early stages of the integrated passenger and freight flows service, the impact on the required number of adapted bus services is mainly given by the last mile operator capacity of delivering freight from bus hubs to final parcel destinations, while the other factors (delivery time windows and distributions parcel destination addresses) do not have a significant impact on the required number of bus services.

Suggested Citation

  • Machado, Bruno & Pimentel, Carina & Sousa, Amaro de, 2023. "Integration planning of freight deliveries into passenger bus networks: Exact and heuristic algorithms," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:transa:v:171:y:2023:i:c:s0965856423000654
    DOI: 10.1016/j.tra.2023.103645
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423000654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhujun & Shalaby, Amer & Roorda, Matthew J. & Mao, Baohua, 2021. "Urban rail service design for collaborative passenger and freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    2. Feng Li & Xin Guo & Li Zhou & Jianjun Wu & Tongfei Li, 2022. "A capacity matching model in a collaborative urban public transport system: integrating passenger and freight transportation," International Journal of Production Research, Taylor & Francis Journals, vol. 60(20), pages 6303-6328, October.
    3. Renaud Masson & Anna Trentini & Fabien Lehuédé & Nicolas Malhéné & Olivier Péton & Houda Tlahig, 2017. "Optimization of a city logistics transportation system with mixed passengers and goods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 81-109, March.
    4. Manuel Laguna, 1998. "Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty," Management Science, INFORMS, vol. 44(11-Part-2), pages 101-110, November.
    5. Marco Mazzarino & Lucio Rubini, 2019. "Smart Urban Planning: Evaluating Urban Logistics Performance of Innovative Solutions and Sustainable Policies in the Venice Lagoon—the Results of a Case Study," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    6. Abood Mourad & Jakob Puchinger & Tom Van Woensel, 2021. "Integrating autonomous delivery service into a passenger transportation system," International Journal of Production Research, Taylor & Francis Journals, vol. 59(7), pages 2116-2139, April.
    7. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    8. Ozturk, Onur & Patrick, Jonathan, 2018. "An optimization model for freight transport using urban rail transit," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1110-1121.
    9. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    10. Veaceslav Ghilas & Jean-François Cordeau & Emrah Demir & Tom Van Woensel, 2018. "Branch-and-Price for the Pickup and Delivery Problem with Time Windows and Scheduled Lines," Transportation Science, INFORMS, vol. 52(5), pages 1191-1210, October.
    11. Demir, Emrah & Huang, Yuan & Scholts, Sebastiaan & Van Woensel, Tom, 2015. "A selected review on the negative externalities of the freight transportation: Modeling and pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 95-114.
    12. Molenbruch, Yves & Braekers, Kris & Hirsch, Patrick & Oberscheider, Marco, 2021. "Analyzing the benefits of an integrated mobility system using a matheuristic routing algorithm," European Journal of Operational Research, Elsevier, vol. 290(1), pages 81-98.
    13. List, George F. & Wood, Bryan & Nozick, Linda K. & Turnquist, Mark A. & Jones, Dean A. & Kjeldgaard, Edwin A. & Lawton, Craig R., 2003. "Robust optimization for fleet planning under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 209-227, May.
    14. Ghilas, Veaceslav & Demir, Emrah & Woensel, Tom Van, 2016. "A scenario-based planning for the pickup and delivery problem with time windows, scheduled lines and stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 34-51.
    15. Fatnassi, Ezzeddine & Chaouachi, Jouhaina & Klibi, Walid, 2015. "Planning and operating a shared goods and passengers on-demand rapid transit system for sustainable city-logistics," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 440-460.
    16. Wanjie Hu & Jianjun Dong & Bon-gang Hwang & Rui Ren & Zhilong Chen, 2019. "A Scientometrics Review on City Logistics Literature: Research Trends, Advanced Theory and Practice," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    17. Bruzzone, Francesco & Cavallaro, Federico & Nocera, Silvio, 2021. "The integration of passenger and freight transport for first-last mile operations," Transport Policy, Elsevier, vol. 100(C), pages 31-48.
    18. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xuan & Kong, Xiang T.R. & Huang, George Q., 2024. "Synchronizing crowdsourced co-modality between passenger and freight transportation services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    2. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    3. Ji, Wei & Huang, Zhengfeng & Gao, Gao & Zheng, Pengjun, 2024. "Evaluation of integrated transport efficiency and equity at the county level——taking the counties in ningbo city as an example," Transport Policy, Elsevier, vol. 148(C), pages 257-272.
    4. Amine Mohamed El Amrani & Mouhsene Fri & Othmane Benmoussa & Naoufal Rouky, 2024. "The Integration of Urban Freight in Public Transportation: A Systematic Literature Review," Sustainability, MDPI, vol. 16(13), pages 1-30, June.
    5. Mohri, Seyed Sina & Nassir, Neema & Thompson, Russell G. & Lavieri, Patricia Sauri, 2024. "Public transportation-based crowd-shipping initiatives: Are users willing to participate? Why not?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    6. Cui, Shaohua & Yang, Ying & Gao, Kun & Cui, Heqi & Najafi, Arsalan, 2024. "Integration of UAVs with public transit for delivery: Quantifying system benefits and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Zhang & Yongbo Lv & Jianwei Guo, 2022. "New Development Direction of Underground Logistics from the Perspective of Public Transport: A Systematic Review Based on Scientometrics," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    2. Bruzzone, Francesco & Nocera, Silvio & Pesenti, Raffaele, 2023. "Feasibility and optimization of freight-on-transit schemes for the sustainable operation of passengers and logistics," Research in Transportation Economics, Elsevier, vol. 101(C).
    3. Yang, Tiannuo & Chu, Zhongzhu & Wang, Bailin, 2023. "Feasibility on the integration of passenger and freight transportation in rural areas: A service mode and an optimization model," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    4. Oliveira, Isabela Kopperschmidt de & Meira, Leonardo Herszon & Oliveira, Leise Kelli, 2024. "Key factors for developing freight and passenger integrated transportation systems in Brazil," Research in Transportation Economics, Elsevier, vol. 104(C).
    5. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    6. Yang, Xuan & Kong, Xiang T.R. & Huang, George Q., 2024. "Synchronizing crowdsourced co-modality between passenger and freight transportation services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    7. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    8. Feng, Wenhao & Tanimoto, Keishi & Chosokabe, Madoka, 2023. "Feasibility analysis of freight-passenger integration using taxis in rural areas by a mixed-integer programming model," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    9. Delle Donne, Diego & Alfandari, Laurent & Archetti, Claudia & Ljubić, Ivana, 2023. "Freight-on-Transit for urban last-mile deliveries: A strategic planning approach," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 53-81.
    10. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    11. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    12. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    13. Hörsting, Lena & Cleophas, Catherine, 2023. "Scheduling shared passenger and freight transport on a fixed infrastructure," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1158-1169.
    14. Hu, Wanjie & Dong, Jianjun & Hwang, Bon-Gang & Ren, Rui & Chen, Zhilong, 2022. "Is mass rapid transit applicable for deep integration of freight-passenger transport? A multi-perspective analysis from urban China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 490-510.
    15. Ma, Mingyou & Zhang, Fangni & Liu, Wei & Dixit, Vinayak, 2022. "A game theoretical analysis of metro-integrated city logistics systems," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 14-27.
    16. Leonor Teixeira & Ana Luísa Ramos & Carolina Costa & Dulce Pedrosa & César Faria & Carina Pimentel, 2023. "SOLFI: An Integrated Platform for Sustainable Urban Last-Mile Logistics’ Operations—Study, Design and Development," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    17. Li, Zhujun & Shalaby, Amer & Roorda, Matthew J. & Mao, Baohua, 2021. "Urban rail service design for collaborative passenger and freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    18. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    19. Ringsberg, Henrik, 2023. "Sustainable FLM transport based on IPF transport by ferry in coastal rural areas: A case from Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    20. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou, 2022. "On understanding the impacts of shared public transportation on urban traffic and road safety using an agent-based simulation with heterogeneous fleets: a case study of Casablanca city," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 3893-3932, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:171:y:2023:i:c:s0965856423000654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.