IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v142y2020icp14-26.html

Non-technological challenges for the remote operation of automated vehicles

Author

Listed:
  • Goodall, Noah

Abstract

No existing automated vehicle can operate in all conditions and environments. In order to allow unmanned operation of automated vehicles in all conditions, many developers have the capability for human drivers to operate the vehicle from a remote location using wireless communication. This practice, referred to as remote operation or teleoperation, is prevalent among industry, yet has received little attention in the legal and transportation literature. This paper describes the legal environment for remote operation of vehicles, both in terms of existing motor vehicle codes and model legislation. The operational performance of remote operation is explored, and a model is developed to estimate the number of remote operators needed to manage large automated vehicle fleets using reasonable assumptions.

Suggested Citation

  • Goodall, Noah, 2020. "Non-technological challenges for the remote operation of automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 14-26.
  • Handle: RePEc:eee:transa:v:142:y:2020:i:c:p:14-26
    DOI: 10.1016/j.tra.2020.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420307369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Henao, Alejandro & Marshall, Wesley E., 2019. "An analysis of the individual economics of ride-hailing drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 440-451.
    2. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Bogusławski & Mateusz Gil & Jan Nasur & Krzysztof Wróbel, 2022. "Implications of autonomous shipping for maritime education and training: the cadet’s perspective," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 327-343, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    2. Keith, David R. & Naumov, Sergey & Rakoff, Hannah E. & Sanches, Lars Meyer & Singh, Anuraag, 2024. "The effect of increasing vehicle utilization on the automotive industry," European Journal of Operational Research, Elsevier, vol. 317(3), pages 776-792.
    3. García-Herrera, Alisson & Basso, Leonardo J. & Tirachini, Alejandro, 2024. "Microeconomic analysis of ridesourcing market regulation policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    4. Adam Millard-Ball & Liwei Liu & Whitney Hansen & Drew Cooper & Joe Castiglione, 2023. "Where ridehail drivers go between trips," Transportation, Springer, vol. 50(5), pages 1959-1981, October.
    5. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    6. Wadud, Zia, 2020. "The effects of e-ridehailing on motorcycle ownership in an emerging-country megacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 301-312.
    7. Hao, Wu & Martin, Layla, 2022. "Prohibiting cherry-picking: Regulating vehicle sharing services who determine fleet and service structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    8. Zheng, Zhicheng & Li, Yang & Rong, Peijun & Zhang, Lijun & Qin, Yaochen & Liu, Gangjun, 2025. "Spatio-temporal dynamic characteristics of the substitution effect of ride-hailing travel and its multi-activity network: a case study of Chengdu," Journal of Transport Geography, Elsevier, vol. 127(C).
    9. Abdul Rais Abdul Latiff & Saidatulakmal Mohd, 2023. "Transport, Mobility and the Wellbeing of Older Adults: An Exploration of Private Chauffeuring and Companionship Services in Malaysia," IJERPH, MDPI, vol. 20(3), pages 1-17, February.
    10. Hamid Mostofi & Houshmand Masoumi & Hans-Liudger Dienel, 2020. "The Association between the Regular Use of ICT Based Mobility Services and the Bicycle Mode Choice in Tehran and Cairo," IJERPH, MDPI, vol. 17(23), pages 1-19, November.
    11. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Comparisons of observed and unobserved parameter heterogeneity in modeling vehicle-miles driven," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    12. Guzman, Luis A. & Sanchez, Juan Esteban & Cantillo-Garcia, Victor A. & Gomez Cardona, Santiago & Sarmiento, Olga L., 2025. "A lifeline for the disconnected: A longitudinal study of a cable car's impact on accessibility, satisfaction, and leisure activities," Transport Policy, Elsevier, vol. 165(C), pages 85-96.
    13. Sanguinetti, Angela & Kurani, Ken, 2020. "Characteristics and Experiences of Ride-Hailing Drivers with Plug-in Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt1203t5fj, Institute of Transportation Studies, UC Davis.
    14. Di, Yining & Xu, Meng & Zhu, Zheng & Yang, Hai & Chen, Xiqun, 2022. "Analysis of ride-sourcing drivers' working Pattern(s) via spatiotemporal work slices: A case study in Hangzhou," Transport Policy, Elsevier, vol. 125(C), pages 336-351.
    15. Severin Diepolder & Andrea Araldo & Tarek Chouaki & Santa Maiti & Sebastian Horl & Constantinos Antoniou, 2025. "Quantifying the Improvement of Accessibility achieved via Shared Mobility on Demand," Papers 2507.13100, arXiv.org, revised Aug 2025.
    16. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    17. Andres Fielbaum & Sergio Jara-Díaz & Javier Alonso-Mora, 2024. "Beyond the last mile: different spatial strategies to integrate on-demand services into public transport in a simplified city," Public Transport, Springer, vol. 16(3), pages 855-892, October.
    18. Gabbe, C.J. & Pierce, Gregory & Clowers, Gordon, 2020. "Parking policy: The effects of residential minimum parking requirements in Seattle," Land Use Policy, Elsevier, vol. 91(C).
    19. Tao, Tao & Qian, Sean, 2024. "Do Smart Loading Zones help reduce traffic congestion? A causal analysis in Pittsburgh," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    20. Shr, Yau-Huo & Chang, Hung-Hao, 2024. "The effects of participating in digital ride-hailing on taxi drivers’ business operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:142:y:2020:i:c:p:14-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.