IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v142y2020icp14-26.html
   My bibliography  Save this article

Non-technological challenges for the remote operation of automated vehicles

Author

Listed:
  • Goodall, Noah

Abstract

No existing automated vehicle can operate in all conditions and environments. In order to allow unmanned operation of automated vehicles in all conditions, many developers have the capability for human drivers to operate the vehicle from a remote location using wireless communication. This practice, referred to as remote operation or teleoperation, is prevalent among industry, yet has received little attention in the legal and transportation literature. This paper describes the legal environment for remote operation of vehicles, both in terms of existing motor vehicle codes and model legislation. The operational performance of remote operation is explored, and a model is developed to estimate the number of remote operators needed to manage large automated vehicle fleets using reasonable assumptions.

Suggested Citation

  • Goodall, Noah, 2020. "Non-technological challenges for the remote operation of automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 14-26.
  • Handle: RePEc:eee:transa:v:142:y:2020:i:c:p:14-26
    DOI: 10.1016/j.tra.2020.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420307369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henao, Alejandro & Marshall, Wesley E., 2019. "An analysis of the individual economics of ride-hailing drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 440-451.
    2. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Bogusławski & Mateusz Gil & Jan Nasur & Krzysztof Wróbel, 2022. "Implications of autonomous shipping for maritime education and training: the cadet’s perspective," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 327-343, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    2. Adam Millard-Ball & Liwei Liu & Whitney Hansen & Drew Cooper & Joe Castiglione, 2023. "Where ridehail drivers go between trips," Transportation, Springer, vol. 50(5), pages 1959-1981, October.
    3. Wadud, Zia, 2020. "The effects of e-ridehailing on motorcycle ownership in an emerging-country megacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 301-312.
    4. Hao, Wu & Martin, Layla, 2022. "Prohibiting cherry-picking: Regulating vehicle sharing services who determine fleet and service structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    5. Abdul Rais Abdul Latiff & Saidatulakmal Mohd, 2023. "Transport, Mobility and the Wellbeing of Older Adults: An Exploration of Private Chauffeuring and Companionship Services in Malaysia," IJERPH, MDPI, vol. 20(3), pages 1-17, February.
    6. Hamid Mostofi & Houshmand Masoumi & Hans-Liudger Dienel, 2020. "The Association between the Regular Use of ICT Based Mobility Services and the Bicycle Mode Choice in Tehran and Cairo," IJERPH, MDPI, vol. 17(23), pages 1-19, November.
    7. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Comparisons of observed and unobserved parameter heterogeneity in modeling vehicle-miles driven," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    8. Sanguinetti, Angela & Kurani, Ken, 2020. "Characteristics and Experiences of Ride-Hailing Drivers with Plug-in Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt1203t5fj, Institute of Transportation Studies, UC Davis.
    9. Di, Yining & Xu, Meng & Zhu, Zheng & Yang, Hai & Chen, Xiqun, 2022. "Analysis of ride-sourcing drivers' working Pattern(s) via spatiotemporal work slices: A case study in Hangzhou," Transport Policy, Elsevier, vol. 125(C), pages 336-351.
    10. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    11. Gabbe, C.J. & Pierce, Gregory & Clowers, Gordon, 2020. "Parking policy: The effects of residential minimum parking requirements in Seattle," Land Use Policy, Elsevier, vol. 91(C).
    12. Ziakopoulos, Apostolos & Oikonomou, Maria G. & Vlahogianni, Eleni I. & Yannis, George, 2021. "Quantifying the implementation impacts of a point to point automated urban shuttle service in a large-scale network," Transport Policy, Elsevier, vol. 114(C), pages 233-244.
    13. Brown, Anne, 2022. "Not all fees are created equal: Equity implications of ride-hail fee structures and revenues," Transport Policy, Elsevier, vol. 125(C), pages 1-10.
    14. Berrebi, Simon J. & Watkins, Kari E., 2020. "Who’s ditching the bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 21-34.
    15. Lee, Yongsung & Circella, Giovanni & Chen, Grace & Kim, Ilsu & Mokhtarian, Patricia L., 2024. "If Pooling with a Discount were Available for the Last Solo-Ridehailing Trip, How Much Additional Travel Time Would Users Have Accepted and for Which Types of Trips?," Institute of Transportation Studies, Working Paper Series qt1dc3v8ms, Institute of Transportation Studies, UC Davis.
    16. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    17. Nadine Kostorz & Eva Fraedrich & Martin Kagerbauer, 2021. "Usage and User Characteristics—Insights from MOIA, Europe’s Largest Ridepooling Service," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    18. Zwick, Felix & Axhausen, Kay W., 2022. "Ride-pooling demand prediction: A spatiotemporal assessment in Germany," Journal of Transport Geography, Elsevier, vol. 100(C).
    19. Wenyuan Zhou & Xuanrong Li & Zhenguo Shi & Bingjie Yang & Dongxu Chen, 2023. "Impact of Carpooling under Mobile Internet on Travel Mode Choices and Urban Traffic Volume: The Case of China," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    20. Bin-Nun, Amitai Y. & Binamira, Isabel, 2020. "A framework for the impact of highly automated vehicles with limited operational design domains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 174-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:142:y:2020:i:c:p:14-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.