IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v81y2025ics0160791x25000533.html
   My bibliography  Save this article

Exploring obstacles to the use of unmanned aerial vehicles in emergency rescue: A BWM-DEMATEL approach

Author

Listed:
  • Li, Tao
  • Fei, Liguo

Abstract

With science and technology developments, unmanned aerial vehicle (UAV) applications in emergency rescue has attracted increasing attention. However, despite their significant advantages, UAVs encounter multiple obstacles in practical applications. Using a hybrid of the best-worst method (BWM) and decision testing and evaluation laboratory (DEMATEL) method (BWM-DEMATEL), this study systematically identifies and analyzes the key obstacles affecting UAV use in emergency rescue. First, through literature review and expert interviews, an obstacle factor system is established comprising six primary indicators: technical limitations, operation and training, law and regulations, environmental adaptability, cost and resources, social acceptance, and ethics. Then, BWM is used to screen the primary and secondary indicators, and a new indicator system is determined for the next step. Next, the causal relationship between the obstacles is analyzed using the DEMATEL method, which reveals the internal structure and interactions between obstacles. The results show that technical limitations, operation and training, law and regulations, and cost and resources are the four most important primary indicators. Essentially, these are the key factors hindering the wide application of UAVs in emergency rescue. Finally, some suggestions and strategies are proposed to provide theoretical support and practical guidance for more efficient UAV applications in emergency rescue.

Suggested Citation

  • Li, Tao & Fei, Liguo, 2025. "Exploring obstacles to the use of unmanned aerial vehicles in emergency rescue: A BWM-DEMATEL approach," Technology in Society, Elsevier, vol. 81(C).
  • Handle: RePEc:eee:teinso:v:81:y:2025:i:c:s0160791x25000533
    DOI: 10.1016/j.techsoc.2025.102863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X25000533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2025.102863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jida Liu & Yuwei Song & Shi An & Changqi Dong, 2022. "How to Improve the Cooperation Mechanism of Emergency Rescue and Optimize the Cooperation Strategy in China: A Tripartite Evolutionary Game Model," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    2. Mohamed, Nader & Al-Jaroodi, Jameela & Jawhar, Imad & Idries, Ahmed & Mohammed, Farhan, 2020. "Unmanned aerial vehicles applications in future smart cities," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    3. Dario Floreano & Robert J. Wood, 2015. "Science, technology and the future of small autonomous drones," Nature, Nature, vol. 521(7553), pages 460-466, May.
    4. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    2. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    4. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    5. Xiaohui Li & Andrey V. Savkin, 2021. "Networked Unmanned Aerial Vehicles for Surveillance and Monitoring: A Survey," Future Internet, MDPI, vol. 13(7), pages 1-21, July.
    6. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    7. Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).
    8. Qian Li & Ting Tan & Benlong Wang & Zhimiao Yan, 2024. "Avian-inspired embodied perception in biohybrid flapping-wing robotics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Juuso Pajasmaa & Kaisa Miettinen & Johanna Silvennoinen, 2025. "Group Decision Making in Multiobjective Optimization: A Systematic Literature Review," Group Decision and Negotiation, Springer, vol. 34(2), pages 329-371, April.
    10. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    11. Željko Stević & Irena Đalić & Dragan Pamučar & Zdravko Nunić & Slavko Vesković & Marko Vasiljević & Ilija Tanackov, 2019. "A new hybrid model for quality assessment of scientific conferences based on Rough BWM and SERVQUAL," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 1-30, April.
    12. Wu, Xingli & Liao, Huchang, 2021. "Modeling personalized cognition of customers in online shopping," Omega, Elsevier, vol. 104(C).
    13. Ravindra Singh Saluja & Varinder Singh, 2023. "Attribute-based characterization, coding, and selection of joining processes using a novel MADM approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 616-655, June.
    14. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    15. Stöcker, Claudia & Bennett, Rohan & Koeva, Mila & Nex, Francesco & Zevenbergen, Jaap, 2022. "Scaling up UAVs for land administration: Towards the plateau of productivity," Land Use Policy, Elsevier, vol. 114(C).
    16. Kavitha, S. & Satheeshkumar, J. & Amudha, T., 2024. "Multi-label feature selection using q-rung orthopair hesitant fuzzy MCDM approach extended to CODAS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 148-173.
    17. Junli Zhang & Guoteng Wang & Zheng Xu & Zheren Zhang, 2022. "A Comprehensive Evaluation Method and Strengthening Measures for AC/DC Hybrid Power Grids," Energies, MDPI, vol. 15(12), pages 1-20, June.
    18. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    19. Hamzeh Soltanali & Mehdi Khojastehpour & Siamak Kheybari, 2023. "Evaluating the critical success factors for maintenance management in agro-industries using multi-criteria decision-making techniques," Operations Management Research, Springer, vol. 16(2), pages 949-968, June.
    20. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:81:y:2025:i:c:s0160791x25000533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.