IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v76y2024ics0160791x24000137.html
   My bibliography  Save this article

The impact of the metaverse on e-commerce business models – A delphi-based scenario study

Author

Listed:
  • Büchel, Hendrik
  • Spinler, Stefan

Abstract

Despite the current buzz for the metaverse, its evolution has yet to be determined, and there is still a great deal of ambiguity, resulting in difficulties to forecast future opportunities. A deeper comprehension of the metaverse ecosystem is crucial to facilitate long-term planning and the dynamic adaptation of business models in the closely related e-commerce sector. Consequently, the main objective of this paper is to explore how the metaverse impacts e-commerce business models. A two-round Delphi-based scenario study (time horizon 2035) was conducted with 26 participating experts to achieve the objective. Based on the expert responses, twenty projections were clustered into three possible future scenarios: (1) immersive and emotional commerce, (2) altered digital landscape, and (3) game changer. The scenarios indicate that the metaverse development will strongly influence e-commerce business models at the customer interface and core strategy. New business models will emerge, and existing business models will adopt the metaverse as an additional channel. As purely digital products gain increased importance, the digital landscape will be altered to fulfill new customer requests. Although improbable by 2035, the game-changing scenario entails a complete transition to digital products and the replacement of present e-commerce with metaverse commerce.

Suggested Citation

  • Büchel, Hendrik & Spinler, Stefan, 2024. "The impact of the metaverse on e-commerce business models – A delphi-based scenario study," Technology in Society, Elsevier, vol. 76(C).
  • Handle: RePEc:eee:teinso:v:76:y:2024:i:c:s0160791x24000137
    DOI: 10.1016/j.techsoc.2024.102465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X24000137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2024.102465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ancillai, Chiara & Sabatini, Andrea & Gatti, Marco & Perna, Andrea, 2023. "Digital technology and business model innovation: A systematic literature review and future research agenda," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    2. Weking, Jörg & Desouza, Kevin C. & Fielt, Erwin & Kowalkiewicz, Marek, 2023. "Metaverse-enabled entrepreneurship," Journal of Business Venturing Insights, Elsevier, vol. 19(C).
    3. Tracy Harwood, 2012. "Emergence of Gamified Commerce: Turning Virtual to Real," Journal of Electronic Commerce in Organizations (JECO), IGI Global, vol. 10(2), pages 16-39, April.
    4. Lehdonvirta, Vili & Castronova, Edward, 2014. "Virtual Economies: Design and Analysis," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262027259, April.
    5. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    6. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    7. von der Gracht, Heiko A. & Darkow, Inga-Lena, 2010. "Scenarios for the logistics services industry: A Delphi-based analysis for 2025," International Journal of Production Economics, Elsevier, vol. 127(1), pages 46-59, September.
    8. Yoo, Kiwoong & Welden, Roman & Hewett, Kelly & Haenlein, Michael, 2023. "The merchants of meta: A research agenda to understand the future of retailing in the metaverse," Journal of Retailing, Elsevier, vol. 99(2), pages 173-192.
    9. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    10. Keegan, Brendan James & McCarthy, Ian P. & Kietzmann, Jan & Canhoto, Ana Isabel, 2024. "On your marks, headset, go! Understanding the building blocks of metaverse realms," Business Horizons, Elsevier, vol. 67(1), pages 107-119.
    11. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    12. Maik A. Lindner & Luis M. Vaquero & Luis Rodero-Merino & Juan Caceres, 2010. "Cloud economics: dynamic business models for business on demand," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 5(4), pages 373-392.
    13. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    14. Spickermann, Alexander & Zimmermann, Martin & von der Gracht, Heiko A., 2014. "Surface- and deep-level diversity in panel selection — Exploring diversity effects on response behaviour in foresight," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 105-120.
    15. Çipi, Amali & Fernandes, Ana Cláudia R.D. & Ferreira, Fernando A.F. & Ferreira, Neuza C.M.Q.F. & Meidutė-Kavaliauskienė, Ieva, 2023. "Detecting and developing new business opportunities in society 5.0 contexts: A sociotechnical approach," Technology in Society, Elsevier, vol. 73(C).
    16. Fritschy, Carolin & Spinler, Stefan, 2019. "The impact of autonomous trucks on business models in the automotive and logistics industry–a Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    17. Charrad, Malika & Ghazzali, Nadia & Boiteau, Véronique & Niknafs, Azam, 2014. "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i06).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Guopeng & Peng, Mixiang & Tang, Fei & Liu, Yuan, 2024. "Unpacking the impact of entrepreneurial learning on business model innovation in internet startups: Mediating roles of digital capabilities," Technology in Society, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peppel, Marcel & Ringbeck, Jürgen & Spinler, Stefan, 2022. "How will last-mile delivery be shaped in 2040? A Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    2. Fritschy, Carolin & Spinler, Stefan, 2019. "The impact of autonomous trucks on business models in the automotive and logistics industry–a Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    3. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Frevel, Nicolas & Beiderbeck, Daniel & Schmidt, Sascha L., 2022. "The impact of technology on sports – A prospective study," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    5. Gebhardt, Maximilian & Spieske, Alexander & Birkel, Hendrik, 2022. "The future of the circular economy and its effect on supply chain dependencies: Empirical evidence from a Delphi study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    6. Kopyto, Matthias & Lechler, Sabrina & von der Gracht, Heiko A. & Hartmann, Evi, 2020. "Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    7. Kluge, Ulrike & Ringbeck, Jürgen & Spinler, Stefan, 2020. "Door-to-door travel in 2035 – A Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    8. Tiberius, Victor & Gojowy, Robin & Dabić, Marina, 2022. "Forecasting the future of robo advisory: A three-stage Delphi study on economic, technological, and societal implications," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    9. Belton, Ian & MacDonald, Alice & Wright, George & Hamlin, Iain, 2019. "Improving the practical application of the Delphi method in group-based judgment: A six-step prescription for a well-founded and defensible process," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 72-82.
    10. Förster, Bernadette & von der Gracht, Heiko, 2014. "Assessing Delphi panel composition for strategic foresight — A comparison of panels based on company-internal and external participants," Technological Forecasting and Social Change, Elsevier, vol. 84(C), pages 215-229.
    11. Rezaei, Mojtaba & Jafari-Sadeghi, Vahid & Cao, Dongmei & Mahdiraji, Hannan Amoozad, 2021. "Key indicators of ethical challenges in digital healthcare: A combined Delphi exploration and confirmative factor analysis approach with evidence from Khorasan province in Iran," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    12. Engelke, Henning & Mauksch, Stefanie & Darkow, Inga-Lena & von der Gracht, Heiko A., 2015. "Opportunities for social enterprise in Germany — Evidence from an expert survey," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 635-646.
    13. Merfeld, Katrin & Wilhelms, Mark-Philipp & Henkel, Sven & Kreutzer, Karin, 2019. "Carsharing with shared autonomous vehicles: Uncovering drivers, barriers and future developments – A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 66-81.
    14. Zeng, Michael A. & Koller, Hans & Jahn, Reimo, 2019. "Open radar groups: The integration of online communities into open foresight processes," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 204-217.
    15. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    16. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    17. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    18. Christoph Markmann & Alexander Spickermann & Heiko A. von der Gracht & Alexander Brem, 2021. "Improving the question formulation in Delphi‐like surveys: Analysis of the effects of abstract language and amount of information on response behavior," Futures & Foresight Science, John Wiley & Sons, vol. 3(1), March.
    19. Haarhaus, Tim & Liening, Andreas, 2020. "Building dynamic capabilities to cope with environmental uncertainty: The role of strategic foresight," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    20. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:76:y:2024:i:c:s0160791x24000137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.