IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v180y2022ics0040162522002049.html
   My bibliography  Save this article

5G network deployment and the associated energy consumption in the UK: A complex systems’ exploration

Author

Listed:
  • Cheng, Xiaoyuan
  • Hu, Yukun
  • Varga, Liz

Abstract

Investing in the communication infrastructure transition requires significant scientific consideration of challenges, prioritisation, risks and uncertainties. To address these challenges, a bottom-up approach was used to demonstrate the future of wireless network transmission and deployment. This study developed an agent-based model to explore the future deployment of non-standalone 5G networks, synthesizing multi-dimensional data visualization. In particular, this research took the UK as an example to investigate the spatiotemporal dynamic characteristics of 5G evolution, and further analysed the energy consumption and carbon footprint of 5G networks, as well as the consequent change in the operating expenses pattern. The simulation results show that 700 MHz and 26 GHz will play an important role in 5G deployment in the UK, which allow base stations to meet short-term and long-term data traffic demands respectively. Furthermore, due to the geopolitical restrictions and embargos, telecommunications may face additional costs of £0.63bn to £1.19bn when deploying 5G radio access networks. Network densification may cause some environmental and economic problems. Take a medium demand scenario as an example, it is found that the electricity consumed by the 5G radio access network will account for more than 2.1% of the total electricity generation, and indirectly lead to 990,404 tonnes carbon emissions in 2030.

Suggested Citation

  • Cheng, Xiaoyuan & Hu, Yukun & Varga, Liz, 2022. "5G network deployment and the associated energy consumption in the UK: A complex systems’ exploration," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:tefoso:v:180:y:2022:i:c:s0040162522002049
    DOI: 10.1016/j.techfore.2022.121672
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522002049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madureira, António & den Hartog, Frank & Bouwman, Harry & Baken, Nico, 2013. "Empirical validation of Metcalfe’s law: How Internet usage patterns have changed over time," Information Economics and Policy, Elsevier, vol. 25(4), pages 246-256.
    2. Edward Oughton, 2018. "Towards 5G: scenario-based assessment of the future supply and demand for mobile telecommunications infrastructure," Working Papers 2017/04 (revised), Cambridge Judge Business School, University of Cambridge.
    3. Oughton, Edward J. & Frias, Zoraida, 2018. "The cost, coverage and rollout implications of 5G infrastructure in Britain," Telecommunications Policy, Elsevier, vol. 42(8), pages 636-652.
    4. Mohammed H. Alsharif & Rosdiadee Nordin, 2017. "Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(4), pages 617-637, April.
    5. Frias, Zoraida & González-Valderrama, Carlos & Pérez Martínez, Jorge, 2017. "Assessment of spectrum value: The case of a second digital dividend in Europe," Telecommunications Policy, Elsevier, vol. 41(5), pages 518-532.
    6. Oughton, Edward & Frias, Zoraida & Russell, Tom & Sicker, Douglas & Cleevely, David D., 2018. "Towards 5G: Scenario-based assessment of the future supply and demand for mobile telecommunications infrastructure," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 141-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. agarwal, shekhar & Gordon, Anna, 2022. "Complexities for the Indian Economy of China's Growing Technological Competence," OSF Preprints fk3r7, Center for Open Science.
    2. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    3. agarwal, shekhar, 2022. "India’s Rising Technology Economy: Sources and Consequences," OSF Preprints x6yzm, Center for Open Science.
    4. Deevela, Niranjan Rao & Singh, Bhim & Kandpal, Tara C., 2023. "Optimization and economic analysis of solar PV based hybrid system for powering Base Transceiver Stations in India," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward J. Oughton & Ashutosh Jha, 2021. "Supportive 5G Infrastructure Policies are Essential for Universal 6G: Assessment using an Open-source Techno-economic Simulation Model utilizing Remote Sensing," Papers 2102.08086, arXiv.org, revised Jun 2021.
    2. Blind, Knut & Niebel, Crispin, 2022. "5G roll-out failures addressed by innovation policies in the EU," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    3. Hoeschele, Thomas & Dietzel, Christoph & Kopp, Daniel & Fitzek, Frank H.P. & Reisslein, Martin, 2021. "Importance of Internet Exchange Point (IXP) infrastructure for 5G: Estimating the impact of 5G use cases," Telecommunications Policy, Elsevier, vol. 45(3).
    4. Oughton, Edward J. & Comini, Niccolò & Foster, Vivien & Hall, Jim W., 2022. "Policy choices can help keep 4G and 5G universal broadband affordable," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    5. Edward J. Oughton & William Lehr, 2022. "Surveying 5G Techno-Economic Research to Inform the Evaluation of 6G Wireless Technologies," Papers 2201.02272, arXiv.org, revised Jan 2022.
    6. Kajikawa, Yuya & Mejia, Cristian & Wu, Mengjia & Zhang, Yi, 2022. "Academic landscape of Technological Forecasting and Social Change through citation network and topic analyses," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    7. Leonardo Guevara & Fernando Auat Cheein, 2020. "The Role of 5G Technologies: Challenges in Smart Cities and Intelligent Transportation Systems," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    8. erpetua S. Wanaswa & Zachary B. Awino & Martin Ogutu & Joseph Owino, 2023. "Technological Innovation and Strategic Leadership Axis on Competitive Advantage of Telecommunication Enterprises," International Journal of Business and Management, Canadian Center of Science and Education, vol. 16(9), pages 1-48, February.
    9. Juan Riol Martín & Raquel Pérez-Leal & Julio Navío-Marco, 2019. "Towards 5G: Techno-economic analysis of suitable use cases," Netnomics, Springer, vol. 20(2), pages 153-175, December.
    10. Ly, Pham Thi Minh & Lai, Wen-Hsiang & Hsu, Chiung-Wen & Shih, Fang-Yin, 2018. "Fuzzy AHP analysis of Internet of Things (IoT) in enterprises," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 1-13.
    11. Edward J. Oughton & Will Usher & Peter Tyler & Jim W. Hall, 2018. "Infrastructure as a Complex Adaptive System," Complexity, Hindawi, vol. 2018, pages 1-11, November.
    12. Lee, Chuan-Kai & Yu, Limeng, 2022. "A multi-level perspective on 5G transition: The China case," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    13. Parcu, Pier Luigi & Innocenti, Niccolò & Carrozza, Chiara, 2022. "Ubiquitous technologies and 5G development. Who is leading the race?," Telecommunications Policy, Elsevier, vol. 46(4).
    14. Satyanand Singh & Joanna Rosak-Szyrocka & István Drotár & Xavier Fernando, 2023. "Oceania’s 5G Multi-Tier Fixed Wireless Access Link’s Long-Term Resilience and Feasibility Analysis," Future Internet, MDPI, vol. 15(10), pages 1-29, October.
    15. Ioannou, Nikos & Kokkinis, Dimitris & Katsianis, Dimitris & Varoutas, Dimitris, 2023. "Comparative Techno-Economic Evaluation of 5G Infrastructure Sharing Business Models in European Rural Areas," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277973, International Telecommunications Society (ITS).
    16. Haldar, Anasuya & Sethi, Narayan, 2022. "Environmental effects of Information and Communication Technology - Exploring the roles of renewable energy, innovation, trade and financial development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Hutajulu, Sahat & Dhewanto, Wawan & Prasetio, Eko Agus, 2020. "Two scenarios for 5G deployment in Indonesia," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    18. Kulmer, Veronika & Seebauer, Sebastian & Hinterreither, Helene & Kortschak, Dominik & Theurl, Michaela C. & Haas, Willi, 2022. "Transforming the s-shape: Identifying and explaining turning points in market diffusion curves of low-carbon technologies in Austria," Research Policy, Elsevier, vol. 51(1).
    19. Perpetua S. Wanaswa & Zachary B. Awino & Martin Ogutu & Joseph Owino, 2023. "Technological Innovation and Competitive Advantage: Empirical Evidence from Large Telecommunication Firms," International Journal of Business and Management, Canadian Center of Science and Education, vol. 16(10), pages 1-21, February.
    20. Ashutosh Jha & Debashis Saha, 2022. "Mobile Broadband for Inclusive Connectivity: What Deters the High-Capacity Deployment of 4G-LTE Innovation in India?," Information Systems Frontiers, Springer, vol. 24(4), pages 1305-1329, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:180:y:2022:i:c:s0040162522002049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.