IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v68y2004i1p91-104.html
   My bibliography  Save this article

Wavelet estimation in varying-coefficient partially linear regression models

Author

Listed:
  • Zhou, Xian
  • You, Jinhong

Abstract

This paper is concerned with the estimation of a varying-coefficient partially linear regression model that is frequently used in statistical modeling. We first construct estimators of the parametric components and the error variance by a wavelet procedure and establish their asymptotic normalities under weaker conditions than those assumed in the previous literature. Then we propose appropriate estimators for the functions characterizing the nonlinear part of the model and derive their convergence rates. Furthermore, we present consistent estimators for the asymptotic (co)variances of the parametric components and error variance estimators as well. These results can be used to make asymptotically valid statistical inference.

Suggested Citation

  • Zhou, Xian & You, Jinhong, 2004. "Wavelet estimation in varying-coefficient partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 91-104, June.
  • Handle: RePEc:eee:stapro:v:68:y:2004:i:1:p:91-104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00073-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, T. L. & Robbins, Herbert & Wei, C. Z., 1979. "Strong consistency of least squares estimates in multiple regression II," Journal of Multivariate Analysis, Elsevier, vol. 9(3), pages 343-361, September.
    2. Li, Qi, et al, 2002. "Semiparametric Smooth Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 412-422, July.
    3. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    4. Hamilton, Scott A. & Truong, Young K., 1997. "Local Linear Estimation in Partly Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Si-Lian & Cui, Jian-Ling & Mei, Chang-Lin & Wang, Chun-Wei, 2014. "Estimation and inference of semi-varying coefficient models with heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 70-93.
    2. Zhang, Weiwei & Li, Gaorong & Xue, Liugen, 2011. "Profile inference on partially linear varying-coefficient errors-in-variables models under restricted condition," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3027-3040, November.
    3. You, Jinhong & Chen, Gemai, 2006. "Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 324-341, February.
    4. Zhou, Xing-cai & Lin, Jin-guan, 2012. "A wavelet estimator in a nonparametric regression model with repeated measurements under martingale difference error’s structure," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1914-1922.
    5. Zhou, Xing-cai & Xu, Ying-zhi & Lin, Jin-guan, 2017. "Wavelet estimation in varying coefficient models for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 179-189.
    6. Li, Yongming & Yang, Shanchao & Zhou, Yong, 2008. "Consistency and uniformly asymptotic normality of wavelet estimator in regression model with associated samples," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2947-2956, December.
    7. Zhou, Xing-cai & Lin, Jin-guan, 2013. "Asymptotic properties of wavelet estimators in semiparametric regression models under dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 251-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:68:y:2004:i:1:p:91-104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.