IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v170y2012i1p15-31.html
   My bibliography  Save this article

Functional coefficient regression models with time trend

Author

Listed:
  • Liang, Zhongwen
  • Li, Qi

Abstract

We consider the problem of estimating a varying coefficient regression model when regressors include a time trend. We show that the commonly used local constant kernel estimation method leads to an inconsistent estimation result, while a local polynomial estimator yields a consistent estimation result. We establish the asymptotic normality result for the proposed estimator. We also provide asymptotic analysis of the data-driven (least squares cross validation) method of selecting the smoothing parameters. In addition, we consider a partially linear time trend model and establish the asymptotic distribution of our proposed estimator. Two test statistics are proposed to test the null hypotheses of a linear and of a partially linear time trend models. Simulations are reported to examine the finite sample performances of the proposed estimators and the test statistics.

Suggested Citation

  • Liang, Zhongwen & Li, Qi, 2012. "Functional coefficient regression models with time trend," Journal of Econometrics, Elsevier, vol. 170(1), pages 15-31.
  • Handle: RePEc:eee:econom:v:170:y:2012:i:1:p:15-31
    DOI: 10.1016/j.jeconom.2011.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407612000784
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Jiti & Gijbels, Irène, 2008. "Bandwidth Selection in Nonparametric Kernel Testing," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1584-1594.
    2. Andreas Savvides & Theofanis P. Mamuneas & Thanasis Stengos, 2006. "Economic development and the return to human capital: a smooth coefficient semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 111-132.
    3. Li, Qi, et al, 2002. "Semiparametric Smooth Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 412-422, July.
    4. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    5. E. Zacharias & T. Stengos, 2006. "Intertemporal pricing and price discrimination: a semiparametric hedonic analysis of the personal computer market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 371-386.
    6. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    7. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    8. Donald W. K. Andrews & C. John McDermott, 1995. "Nonlinear Econometric Models with Deterministically Trending Variables," Review of Economic Studies, Oxford University Press, vol. 62(3), pages 343-360.
    9. Xia, Yingcun & Li, W. K., 2002. "Asymptotic Behavior of Bandwidth Selected by the Cross-Validation Method for Local Polynomial Fitting," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 265-287, November.
    10. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    11. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    12. Jianqing Fan, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying-coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731.
    13. Li, Dong & Li, Qi, 2010. "Nonparametric/semiparametric estimation and testing of econometric models with data dependent smoothing parameters," Journal of Econometrics, Elsevier, vol. 157(1), pages 179-190, July.
    14. Xiao, Zhijie, 2009. "Functional-coefficient cointegration models," Journal of Econometrics, Elsevier, vol. 152(2), pages 81-92, October.
    15. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:wyi:journl:002112 is not listed on IDEAS
    2. Zongwu Cai & Qi Li, 2013. "Some Recent Develop- ments on Nonparametric Econometrics," WISE Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    3. Yichen Gao & Zheng Li & Zhongjian Lin, 2014. "Semiparametric Estimation of Partially Linear Varying Coefficient Models with Time Trend and Nonstationary Regressors," Emory Economics 1412, Department of Economics, Emory University (Atlanta).
    4. Xu, Ke-Li, 2016. "Multivariate trend function testing with mixed stationary and integrated disturbances," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 38-57.

    More about this item

    Keywords

    Varying coefficient model; Time trend; Partially linear model; Specification tests;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:170:y:2012:i:1:p:15-31. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.