IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v43y1999i1p65-73.html
   My bibliography  Save this article

Recursive mean adjustment in time-series inferences

Author

Listed:
  • So, Beong Soo
  • Shin, Dong Wan

Abstract

When time-series data are positively autocorrelated, mean adjustment using the overall sample mean causes biases for sample autocorrelations and parameter estimates, which decreases the coverage probabilities of confidence intervals. A new method for mean adjustment is proposed, in which a datum at a time is adjusted for the mean through the partial sample mean, the average of data up to the time point. The method is simple and reduces the biases of the parameter estimators and the sample autocorrelations when data are positively autocorrelated. The empirical coverage probabilities of the confidence intervals of the autoregressive coefficient become quite close to the nominal level.

Suggested Citation

  • So, Beong Soo & Shin, Dong Wan, 1999. "Recursive mean adjustment in time-series inferences," Statistics & Probability Letters, Elsevier, vol. 43(1), pages 65-73, May.
  • Handle: RePEc:eee:stapro:v:43:y:1999:i:1:p:65-73
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00247-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:43:y:1999:i:1:p:65-73. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.