IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v43y1999i1p65-73.html
   My bibliography  Save this article

Recursive mean adjustment in time-series inferences

Author

Listed:
  • So, Beong Soo
  • Shin, Dong Wan

Abstract

When time-series data are positively autocorrelated, mean adjustment using the overall sample mean causes biases for sample autocorrelations and parameter estimates, which decreases the coverage probabilities of confidence intervals. A new method for mean adjustment is proposed, in which a datum at a time is adjusted for the mean through the partial sample mean, the average of data up to the time point. The method is simple and reduces the biases of the parameter estimators and the sample autocorrelations when data are positively autocorrelated. The empirical coverage probabilities of the confidence intervals of the autoregressive coefficient become quite close to the nominal level.

Suggested Citation

  • So, Beong Soo & Shin, Dong Wan, 1999. "Recursive mean adjustment in time-series inferences," Statistics & Probability Letters, Elsevier, vol. 43(1), pages 65-73, May.
  • Handle: RePEc:eee:stapro:v:43:y:1999:i:1:p:65-73
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00247-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    2. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    3. Robert L. Paige & A. Alexandre Trindade & P. Harshini Fernando, 2009. "Saddlepoint‐Based Bootstrap Inference for Quadratic Estimating Equations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 98-111, March.
    4. Michael Bordo & Barry Eichengreen, 2013. "Bretton Woods and the Great Inflation," NBER Chapters, in: The Great Inflation: The Rebirth of Modern Central Banking, pages 449-489, National Bureau of Economic Research, Inc.
    5. Rossi, Barbara, 2005. "Confidence Intervals for Half-Life Deviations From Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 432-442, October.
    6. Josep LluIs Carrion-I-Silvestre & Tomas Del Barrio & Enrique Lopez-Bazo, 2004. "Evidence on the purchasing power parity in a panel of cities," Applied Economics, Taylor & Francis Journals, vol. 36(9), pages 961-966.
    7. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    8. Astorga, Pablo, 2012. "Mean reversion in long-horizon real exchange rates: Evidence from Latin America," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1529-1550.
    9. Wan Shin, Dong & Soo So, Beong, 2001. "Confidence intervals for the largest root of autoregressive models based on instrumental variable estimators," Economics Letters, Elsevier, vol. 71(2), pages 181-189, May.
    10. Phillips, Peter C. B. & Park, Joon Y. & Chang, Yoosoon, 2004. "Nonlinear instrumental variable estimation of an autoregression," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 219-246.
    11. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    12. Ernst, Matthew & Rodecker, Jared & Luvaga, Ebby & Alexander, Terence & Kliebenstein, James & MIRANOWSKI, JOHN A, 1999. "The Viability of Methane Production by Anaerobic Digestion on Iowa Swine Farms," ISU General Staff Papers 199910010700001329, Iowa State University, Department of Economics.
    13. Joakim Westerlund & Syed Basher, 2008. "Testing for Convergence in Carbon Dioxide Emissions Using a Century of Panel Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 109-120, May.
    14. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    15. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    16. Jungbin Hwang & Gonzalo Valdés, 2020. "Low Frequency Cointegrating Regression in the Presence of Local to Unity Regressors and Unknown Form of Serial Dependence," Working papers 2020-03, University of Connecticut, Department of Economics, revised Aug 2020.
    17. Jonathan H. Wright, 2000. "Exact confidence intervals for impulse responses in a Gaussian vector autoregression," International Finance Discussion Papers 682, Board of Governors of the Federal Reserve System (U.S.).
    18. Queneau, Hervé & Sen, Amit, 2012. "On the structure of US unemployment disaggregated by race, ethnicity, and gender," Economics Letters, Elsevier, vol. 117(1), pages 91-95.
    19. Pablo M. Pincheira & Carlos A. Medel, 2016. "Forecasting with a Random Walk," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(6), pages 539-564, December.
    20. Ahmad, Yamin & Lo, Ming Chien & Mykhaylova, Olena, 2013. "Volatility and persistence of simulated DSGE real exchange rates," Economics Letters, Elsevier, vol. 119(1), pages 38-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:43:y:1999:i:1:p:65-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.