IDEAS home Printed from
   My bibliography  Save this article

A leavable bounded-velocity stochastic control problem


  • Karatzas, Ioannis
  • Ocone, Daniel


This paper studies bounded-velocity control of a Brownian motion when discretionary stopping, or 'leaving', is allowed. The goal is to choose a control law and a stopping time in order to minimize the expected sum of a running and a termination cost, when both costs increase as a function of distance from the origin. There are two versions of this problem: the fully observed case, in which the control multiplies a known gain, and the partially observed case, in which the gain is random and unknown. Without the extra feature of stopping, the fully observed problem originates with Benes (Stochastic Process. Appl. 2 (1974) 127-140), who showed that the optimal control takes the 'bang-bang' form of pushing with maximum velocity toward the origin. We show here that this same control is optimal in the case of discretionary stopping; in the case of power-law costs, we solve the variational equation for the value function and explicitly determine the optimal stopping policy. We also discuss qualitative features of the solution for more general cost structures. When no discretionary stopping is allowed, the partially observed case has been solved by Benes et al. (Stochastics Monographs, Vol. 5, Gordon & Breach, New York and London, pp. 121-156) and Karatzas and Ocone (Stochastic Anal. Appl. 11 (1993) 569-605). When stopping is allowed, we obtain lower bounds on the optimal stopping region using stopping regions of related, fully observed problems.

Suggested Citation

  • Karatzas, Ioannis & Ocone, Daniel, 2002. "A leavable bounded-velocity stochastic control problem," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 31-51, May.
  • Handle: RePEc:eee:spapps:v:99:y:2002:i:1:p:31-51

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ioannis Karatzas & (*), S. G. Kou, 1998. "Hedging American contingent claims with constrained portfolios," Finance and Stochastics, Springer, vol. 2(3), pages 215-258.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    2. Xiongfei Jian & Xun Li & Fahuai Yi, 2014. "Optimal Investment with Stopping in Finite Horizon," Papers 1406.6940,


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:99:y:2002:i:1:p:31-51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.