IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A leavable bounded-velocity stochastic control problem

Listed author(s):
  • Karatzas, Ioannis
  • Ocone, Daniel
Registered author(s):

    This paper studies bounded-velocity control of a Brownian motion when discretionary stopping, or 'leaving', is allowed. The goal is to choose a control law and a stopping time in order to minimize the expected sum of a running and a termination cost, when both costs increase as a function of distance from the origin. There are two versions of this problem: the fully observed case, in which the control multiplies a known gain, and the partially observed case, in which the gain is random and unknown. Without the extra feature of stopping, the fully observed problem originates with Benes (Stochastic Process. Appl. 2 (1974) 127-140), who showed that the optimal control takes the 'bang-bang' form of pushing with maximum velocity toward the origin. We show here that this same control is optimal in the case of discretionary stopping; in the case of power-law costs, we solve the variational equation for the value function and explicitly determine the optimal stopping policy. We also discuss qualitative features of the solution for more general cost structures. When no discretionary stopping is allowed, the partially observed case has been solved by Benes et al. (Stochastics Monographs, Vol. 5, Gordon & Breach, New York and London, pp. 121-156) and Karatzas and Ocone (Stochastic Anal. Appl. 11 (1993) 569-605). When stopping is allowed, we obtain lower bounds on the optimal stopping region using stopping regions of related, fully observed problems.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 99 (2002)
    Issue (Month): 1 (May)
    Pages: 31-51

    in new window

    Handle: RePEc:eee:spapps:v:99:y:2002:i:1:p:31-51
    Contact details of provider: Web page:

    Order Information: Postal: http://

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Ioannis Karatzas & (*), S. G. Kou, 1998. "Hedging American contingent claims with constrained portfolios," Finance and Stochastics, Springer, vol. 2(3), pages 215-258.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:99:y:2002:i:1:p:31-51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.