IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1806.09302.html
   My bibliography  Save this paper

Exit problem as the generalized solution of Dirichlet problem

Author

Listed:
  • Yuecai Han
  • Qingshuo Song
  • Gu Wang

Abstract

This paper investigates sufficient conditions for a Feynman-Kac functional up to an exit time to be the generalized viscosity solution of a Dirichlet problem. The key ingredient is to find out the continuity of exit operator under Skorokhod topology, which reveals the intrinsic connection between overfitting Dirichlet boundary and fine topology. As an application, we establish the sub and supersolutions for a class of non-stationary HJB (Hamilton-Jacobi-Bellman) equations with fractional Laplacian operator via Feynman-Kac functionals associated to $\alpha$-stable processes, which help verify the solvability of the original HJB equation.

Suggested Citation

  • Yuecai Han & Qingshuo Song & Gu Wang, 2018. "Exit problem as the generalized solution of Dirichlet problem," Papers 1806.09302, arXiv.org, revised Jan 2019.
  • Handle: RePEc:arx:papers:1806.09302
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1806.09302
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    2. Karatzas, Ioannis & Ocone, Daniel, 2002. "A leavable bounded-velocity stochastic control problem," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 31-51, May.
    3. repec:dau:papers:123456789/332 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
    2. Fernández Lexuri & Hieber Peter & Scherer Matthias, 2013. "Double-barrier first-passage times of jump-diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 107-141, July.
    3. Zailei Cheng, 2017. "Optimal dividends in the dual risk model under a stochastic interest rate," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-16, March.
    4. Kyriakos Georgiou & Athanasios N. Yannacopoulos, 2023. "Probability of Default modelling with L\'evy-driven Ornstein-Uhlenbeck processes and applications in credit risk under the IFRS 9," Papers 2309.12384, arXiv.org.
    5. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    6. Peter K. Friz & Stefan Gerhold & Marc Yor, 2013. "How to make Dupire's local volatility work with jumps," Papers 1302.5548, arXiv.org.
    7. Savas Dayanik, 2008. "Optimal Stopping of Linear Diffusions with Random Discounting," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 645-661, August.
    8. Jose Cruz & Maria Grossinho & Daniel Sevcovic & Cyril Izuchukwu Udeani, 2022. "Linear and Nonlinear Partial Integro-Differential Equations arising from Finance," Papers 2207.11568, arXiv.org.
    9. Hainaut, Donatien & Leonenko, Nikolai, 2020. "Option pricing in illiquid markets: a fractional jump-diffusion approach," LIDAM Discussion Papers ISBA 2020003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    11. Kathrin Glau, 2015. "Feynman-Kac formula for L\'evy processes with discontinuous killing rate," Papers 1502.07531, arXiv.org, revised Nov 2015.
    12. Nemat Safarov & Colin Atkinson, 2017. "Natural Gas-Fired Power Plants Valuation And Optimization Under Lévy Copulas And Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-38, February.
    13. Jacob Söhl & Mathias Trabs, 2012. "Option calibration of exponential Lévy models: Implementation and empirical results," SFB 649 Discussion Papers SFB649DP2012-017, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    14. Andrey Itkin & Dmitry Muravey, 2023. "American options in time-dependent one-factor models: Semi-analytic pricing, numerical methods and ML support," Papers 2307.13870, arXiv.org.
    15. Peter Friz & Stefan Gerhold, 2011. "Don't stay local - extrapolation analytics for Dupire's local volatility," Papers 1105.1267, arXiv.org.
    16. Ewald, Christian-Oliver & Nawar, Roy & Siu, Tak Kuen, 2013. "Minimal variance hedging of natural gas derivatives in exponential Lévy models: Theory and empirical performance," Energy Economics, Elsevier, vol. 36(C), pages 97-107.
    17. Jakub Drahokoupil, 2020. "Variance Gamma process in the option pricing model," FFA Working Papers 3.002, Prague University of Economics and Business, revised 31 Jan 2021.
    18. Nemat Safarov & Colin Atkinson, 2016. "Natural gas-fired power plants valuation and optimisation under Levy copulas and regime-switching," Papers 1607.01207, arXiv.org, revised Jul 2016.
    19. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    20. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1806.09302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.