IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1105.1267.html
   My bibliography  Save this paper

Don't stay local - extrapolation analytics for Dupire's local volatility

Author

Listed:
  • Peter Friz
  • Stefan Gerhold

Abstract

A robust implementation of a Dupire type local volatility model is an important issue for every option trading floor. Typically, this (inverse) problem is solved in a two step procedure : (i) a smooth parametrization of the implied volatility surface; (ii) computation of the local volatility based on the resulting call price surface. Point (i), and in particular how to extrapolate the implied volatility in extreme strike regimes not seen in the market, has been the subject of numerous articles, starting with Lee (Math. Finance, 2004). In the present paper we give direct analytic insights into the asymptotic behavior of local volatility at extreme strikes.

Suggested Citation

  • Peter Friz & Stefan Gerhold, 2011. "Don't stay local - extrapolation analytics for Dupire's local volatility," Papers 1105.1267, arXiv.org.
  • Handle: RePEc:arx:papers:1105.1267
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1105.1267
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    3. Peter Friz & Stefan Gerhold & Archil Gulisashvili & Stephan Sturm, 2011. "On refined volatility smile expansion in the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1151-1164.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    6. Peter Carr & Helyette Geman & Dilip Madan & Marc Yor, 2004. "From local volatility to local Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 581-588.
    7. repec:dau:papers:123456789/1448 is not listed on IDEAS
    8. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Gao & Roger Lee, 2014. "Asymptotics of implied volatility to arbitrary order," Finance and Stochastics, Springer, vol. 18(2), pages 349-392, April.
    2. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    3. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    4. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    5. Peter K. Friz & Stefan Gerhold & Marc Yor, 2013. "How to make Dupire's local volatility work with jumps," Papers 1302.5548, arXiv.org.
    6. Antoine Jacquier & Patrick Roome, 2013. "The Small-Maturity Heston Forward Smile," Papers 1303.4268, arXiv.org, revised Aug 2013.
    7. Archil Gulisashvili & Josep Vives, 2014. "Asymptotic analysis of stock price densities and implied volatilities in mixed stochastic models," Papers 1403.5302, arXiv.org.
    8. Stefan Gerhold & Christoph Gerstenecker & Arpad Pinter, 2018. "Moment Explosions in the Rough Heston Model," Papers 1801.09458, arXiv.org, revised Apr 2018.
    9. Antoine Jacquier & Fangwei Shi, 2016. "The randomised Heston model," Papers 1608.07158, arXiv.org, revised Dec 2018.
    10. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
    11. Andrew Papanicolaou, 2021. "Extreme-Strike Comparisons and Structural Bounds for SPX and VIX Options," Papers 2101.00299, arXiv.org, revised Mar 2021.
    12. Ernst Eberlein & Dilip Madan, 2009. "Sato processes and the valuation of structured products," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 27-42.
    13. F. Antonelli & A. Ramponi & S. Scarlatti, 2016. "Random Time Forward-Starting Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-25, December.
    14. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    15. Francesco Caravenna & Jacopo Corbetta, 2014. "General smile asymptotics with bounded maturity," Papers 1411.1624, arXiv.org, revised Jul 2016.
    16. Xiaowei Zhang & Peter W. Glynn, 2018. "Affine Jump-Diffusions: Stochastic Stability and Limit Theorems," Papers 1811.00122, arXiv.org.
    17. del Baño Rollin, Sebastian & Ferreiro-Castilla, Albert & Utzet, Frederic, 2010. "On the density of log-spot in the Heston volatility model," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2037-2063, September.
    18. A. Gulisashvili & E. M. Stein, 2009. "Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models," Papers 0906.0392, arXiv.org.
    19. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    20. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1105.1267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.