IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i4p813-844.html
   My bibliography  Save this article

Locally stationary long memory estimation

Author

Listed:
  • Roueff, François
  • von Sachs, Rainer

Abstract

There exists a wide literature on parametrically or semi-parametrically modelling strongly dependent time series using a long-memory parameter d, including more recent work on wavelet estimation. As a generalization of these latter approaches, in this work we allow the long-memory parameter d to be varying over time. We adopt a semi-parametric approach in order to avoid fitting a time-varying parametric model, such as tvARFIMA, to the observed data. We study the asymptotic behavior of a local log-regression wavelet estimator of the time-dependent d. Both simulations and a real data example complete our work on providing a fairly general approach.

Suggested Citation

  • Roueff, François & von Sachs, Rainer, 2011. "Locally stationary long memory estimation," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 813-844, April.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:4:p:813-844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00289-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    2. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2008. "Normalized least-squares estimation in time-varying ARCH models," LSE Research Online Documents on Economics 25187, London School of Economics and Political Science, LSE Library.
    5. F. Roueff & M. S. Taqqu, 2009. "Asymptotic normality of wavelet estimators of the memory parameter for linear processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(5), pages 534-558, September.
    6. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    7. Dahlhaus, Rainer & Neumann, Michael H., 2001. "Locally adaptive fitting of semiparametric models to nonstationary time series," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 277-308, February.
    8. Dahlhaus, Rainer, 2009. "Local inference for locally stationary time series based on the empirical spectral measure," Journal of Econometrics, Elsevier, vol. 151(2), pages 101-112, August.
    9. E. Moulines & F. Roueff & M. S. Taqqu, 2007. "On the Spectral Density of the Wavelet Coefficients of Long-Memory Time Series with Application to the Log-Regression Estimation of the Memory Parameter," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(2), pages 155-187, March.
    10. Roueff, F. & Taqqu, M.S., 2009. "Central limit theorems for arrays of decimated linear processes," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 3006-3041, September.
    11. Dahlhaus, R., 1996. "On the Kullback-Leibler information divergence of locally stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 139-168, March.
    12. Faÿ, Gilles & Moulines, Eric & Roueff, François & Taqqu, Murad S., 2009. "Estimators of long-memory: Fourier versus wavelets," Journal of Econometrics, Elsevier, vol. 151(2), pages 159-177, August.
    13. Thomas Mikosch & Catalin Starica, 2004. "Changes of structure in financial time series and the GARCH model," Econometrics 0412003, EconWPA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsangyao Chang & Xiao-lin Li & Stephen M. Miller & Mehmet Balcilar & Rangan Gupta, 2013. "The Co-Movement and Causality between the U.S. Real Estate and Stock Markets in the Time and Frequency Domains," Working papers 2013-34, University of Connecticut, Department of Economics.
    2. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    3. Vacha, Lukas & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2013. "Time–frequency dynamics of biofuel–fuel–food system," Energy Economics, Elsevier, vol. 40(C), pages 233-241.
    4. repec:eee:reveco:v:49:y:2017:i:c:p:536-547 is not listed on IDEAS
    5. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Gold, oil, and stocks: Dynamic correlations," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 186-201.
    6. Chi-Wei SU & Zong-Liang YAO & Hsu-Ling CHANG, 2016. "The relationship between output and asset prices: A time – and frequency – varying approach," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(1(606), S), pages 57-76, Spring.
    7. repec:bpj:sndecm:v:21:y:2017:i:4:p:18:n:6 is not listed on IDEAS
    8. Boubaker Heni & Canarella Giorgio & Miller Stephen M. & Gupta Rangan, 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    9. Jiang, Chun & Chang, Tsangyao & Li, Xiao-Lin, 2015. "Money growth and inflation in China: New evidence from a wavelet analysis," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 249-261.
    10. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    11. Heni Boubaker & Nadia Sghaier, 2014. "Wavelet based Estimation of Time- Varying Long Memory Model with Nonlinear Fractional Integration Parameter," Working Papers 2014-284, Department of Research, Ipag Business School.
    12. Anand, B. & Paul, Sunil & Ramachandran, M., 2014. "Volatility Spillover between Oil and Stock Market Returns," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 49(1), pages 37-56.
    13. Li, Xiao-Lin & Chang, Tsangyao & Miller, Stephen M. & Balcilar, Mehmet & Gupta, Rangan, 2015. "The co-movement and causality between the U.S. housing and stock markets in the time and frequency domains," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 220-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:4:p:813-844. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.