IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i8p1037-1051.html
   My bibliography  Save this article

Stability of regime-switching diffusions

Author

Listed:
  • Khasminskii, R.Z.
  • Zhu, C.
  • Yin, G.

Abstract

This work is devoted to stability of regime-switching diffusion processes. After presenting the formulation of regime-switching diffusions, the notion of stability is recalled, and necessary conditions for p-stability are obtained. Then main results on stability and instability for systems arising in approximation are presented. Easily verifiable conditions are established. An example is examined as a demonstration. A remark on linear systems is also provided.

Suggested Citation

  • Khasminskii, R.Z. & Zhu, C. & Yin, G., 2007. "Stability of regime-switching diffusions," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 1037-1051, August.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:8:p:1037-1051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00179-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Chenggui & Mao, Xuerong, 2003. "Asymptotic stability in distribution of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 277-291, February.
    2. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. "Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-320, June.
    3. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifei Bian & Wencai Zhao & Yi Song & Rong Yue, 2017. "Dynamical Analysis of a Class of Prey-Predator Model with Beddington-DeAngelis Functional Response, Stochastic Perturbation, and Impulsive Toxicant Input," Complexity, Hindawi, vol. 2017, pages 1-18, December.
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Threshold of a regime-switching SIRS epidemic model with a ratio-dependent incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 614-625.
    3. Alessandro Ramponi, 2011. "Mixture Dynamics and Regime Switching Diffusions with Application to Option Pricing," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 349-368, June.
    4. Zu, Li & Jiang, Daqing & O’Regan, Donal & Hayat, Tasawar & Ahmad, Bashir, 2018. "Ergodic property of a Lotka–Volterra predator–prey model with white noise higher order perturbation under regime switching," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 93-102.
    5. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    6. Quan Wang & Li Zu & Daqing Jiang & Donal O’Regan, 2023. "Study on Dynamic Behavior of a Stochastic Predator–Prey System with Beddington–DeAngelis Functional Response and Regime Switching," Mathematics, MDPI, vol. 11(12), pages 1-17, June.
    7. Caraballo, Tomás & Settati, Adel & Fatini, Mohamed El & Lahrouz, Aadil & Imlahi, Abdelouahid, 2019. "Global stability and positive recurrence of a stochastic SIS model with Lévy noise perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 677-690.
    8. Leonardo Videla & Rolando Rebolledo, 2022. "Evolving Systems of Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1662-1705, September.
    9. Wang, Liang & Jiang, Daqing & Feng, Tao, 2022. "Threshold dynamics in a stochastic chemostat model under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    10. Lin Hu & Lin-Fei Nie, 2022. "Dynamics of a Stochastic HIV Infection Model with Logistic Growth and CTLs Immune Response under Regime Switching," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    11. Xi, Fubao & Yin, G., 2010. "Asymptotic properties of nonlinear autoregressive Markov processes with state-dependent switching," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1378-1389, July.
    12. Socha, Leslaw & Zhu, Quanxin, 2019. "Exponential stability with respect to part of the variables for a class of nonlinear stochastic systems with Markovian switchings," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 2-14.
    13. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a regime-switching predator–prey model with anti-predator behaviour and higher-order perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 199-210.
    14. Chen, Zhewen & Tian, Zhuyan & Zhang, Shuwen & Wei, Chunjin, 2020. "The stationary distribution and ergodicity of a stochastic phytoplankton–zooplankton model with toxin-producing phytoplankton under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    15. Settati, A. & Lahrouz, A. & Zahri, M. & Tridane, A. & El Fatini, M. & El Mahjour, H. & Seaid, M., 2021. "A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    2. Xu, Guangli & Wang, Yongjin, 2016. "On stability of the Markov-modulated skew CIR process," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 139-144.
    3. Xi, Fubao & Yin, G., 2010. "Asymptotic properties of nonlinear autoregressive Markov processes with state-dependent switching," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1378-1389, July.
    4. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    5. E. K. Boukas, 2004. "Nonfragile Controller Design for Linear Markovian Jumping Parameters Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 241-255, August.
    6. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    7. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    8. Gordon G. Sollars & Sorin Tuluca, 2012. "The Optimal Timing of Strategic Action – A Real Options Approach," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 8(2), pages 78-95.
    9. Gao, Lin & Hitzemann, Steffen & Shaliastovich, Ivan & Xu, Lai, 2022. "Oil volatility risk," Journal of Financial Economics, Elsevier, vol. 144(2), pages 456-491.
    10. Wallner, Christian & Wystup, Uwe, 2004. "Efficient computation of option price sensitivities for options of American style," CPQF Working Paper Series 1, Frankfurt School of Finance and Management, Centre for Practical Quantitative Finance (CPQF).
    11. Giandomenico, Rossano, 2006. "Valuing an American Put Option," MPRA Paper 20082, University Library of Munich, Germany.
    12. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    13. Michael J. Dueker & Thomas W. Miller, 1996. "Market microstructure effects on the direct measurement of the early exercise premium in exchange-listed options," Working Papers 1996-013, Federal Reserve Bank of St. Louis.
    14. George Chang, 2018. "Examining the Efficiency of American Put Option Pricing by Monte Carlo Methods with Variance Reduction," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(2), pages 10-13, February.
    15. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    16. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    17. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    18. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    19. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    20. Xinfu Chen & John Chadam & Lishang Jiang & Weian Zheng, 2008. "Convexity Of The Exercise Boundary Of The American Put Option On A Zero Dividend Asset," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 185-197, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:8:p:1037-1051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.