IDEAS home Printed from https://ideas.repec.org/a/ibn/ijefaa/v10y2018i2p10-13.html
   My bibliography  Save this article

Examining the Efficiency of American Put Option Pricing by Monte Carlo Methods with Variance Reduction

Author

Listed:
  • George Chang

Abstract

We apply the Monte Carlo simulation algorithm developed by Broadie and Glasserman (1997) and the control variate technique first introduced to asset pricing via simulation by Boyle (1977) to examine the efficiency of American put option pricing via this combined method. The importance and effectiveness of variance reduction is clearly demonstrated in our simulation results. We also found that the control variates technique does not work as well for deep-in-the-money American put options. This is because deep-in-the-money American options are more likely to be exercised early, thus the value of the American options are less in line (or less correlated) with those of their European counterparts.

Suggested Citation

  • George Chang, 2018. "Examining the Efficiency of American Put Option Pricing by Monte Carlo Methods with Variance Reduction," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(2), pages 10-13, February.
  • Handle: RePEc:ibn:ijefaa:v:10:y:2018:i:2:p:10-13
    as

    Download full text from publisher

    File URL: http://ccsenet.org/journal/index.php/ijef/article/view/72023/39907
    Download Restriction: no

    File URL: http://ccsenet.org/journal/index.php/ijef/article/view/72023
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hull, John & White, Alan, 1988. "The Use of the Control Variate Technique in Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 237-251, September.
    2. Spassimir H. Paskov & Joseph F. Traub, 1995. "Faster Valuation of Financial Derivatives," Working Papers 95-03-034, Santa Fe Institute.
    3. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, September.
    4. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. "Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-320, June.
    5. Kim, In Joon, 1990. "The Analytic Valuation of American Options," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-572.
    6. Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-646.
    7. Amin, Kaushik I., 1991. "On the Computation of Continuous Time Option Prices Using Discrete Approximations," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(4), pages 477-495, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. San-Lin Chung & Mark Shackleton, 2005. "On the use and improvement of Hull and White's control variate technique," Applied Financial Economics, Taylor & Francis Journals, vol. 15(16), pages 1171-1179.
    3. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    4. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    5. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    8. Fabozzi, Frank J. & Paletta, Tommaso & Stanescu, Silvia & Tunaru, Radu, 2016. "An improved method for pricing and hedging long dated American options," European Journal of Operational Research, Elsevier, vol. 254(2), pages 656-666.
    9. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    10. D. J. Manuge & P. T. Kim, 2014. "A fast Fourier transform method for Mellin-type option pricing," Papers 1403.3756, arXiv.org, revised Mar 2014.
    11. Andras Prekopa & Tam�s Sz�ntai, 2010. "On the analytical-numerical valuation of the Bermudan and American options," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 59-74.
    12. Deswal, Komal & Kumar, Devendra, 2022. "Rannacher time-marching with orthogonal spline collocation method for retrieving the discontinuous behavior of hedging parameters," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    13. Doobae Jun & Hyejin Ku, 2013. "Valuation of American partial barrier options," Review of Derivatives Research, Springer, vol. 16(2), pages 167-191, July.
    14. Chiarella, Carl & Ziogas, Andrew, 2005. "Evaluation of American strangles," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 31-62, January.
    15. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    16. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    17. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    18. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    19. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    20. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.

    More about this item

    Keywords

    option pricing; american put option; monte carlo simulation; variance reduction;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijefaa:v:10:y:2018:i:2:p:10-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.