IDEAS home Printed from
   My bibliography  Save this article

Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis


  • Wu, Desheng(Dash)
  • Liang, Liang
  • Yang, Zijiang


Many studies have applied backpropagation feedforward neural networks (BPNNs) as an alternative to multivariate discriminant analysis (MDA) in attempts to predict business distress using relatively small data sets. Although these studies have generally reported the superiority of BPNNs vs. MDA, they seem to ignore the fact that the former suffers from overfitting if the data set is too small compared to the free parameters of the network. We thus suggest an alternative approach that involves use of a probabilistic neural network (PNN). From our study of financially distressed Chinese public companies, we found that both the PNN and MDA algorithms provide good classifications. Relative to MDA, however, the PNN method provides better prediction, and, at the same time, does not require multivariate normality of the data. Our results appear to offer an improvement from those of earlier efforts that employ MDA, BPNN, and other models. In particular, PNN was here able to predict company distress with greater than 87.5% short-term accuracy, and 81.3% medium-term accuracy.

Suggested Citation

  • Wu, Desheng(Dash) & Liang, Liang & Yang, Zijiang, 2008. "Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 206-220, September.
  • Handle: RePEc:eee:soceps:v:42:y:2008:i:3:p:206-220

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
    2. Fehle, Frank & Tsyplakov, Sergey, 2005. "Dynamic risk management: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 78(1), pages 3-47, October.
    3. Hutchison, Michael & McDill, Kathleen, 1999. "Are All Banking Crises Alike? The Japanese Experience in International Comparison," Journal of the Japanese and International Economies, Elsevier, vol. 13(3), pages 155-180, September.
    4. Cooper, W. W. & Deng, Honghui & Gu, Bisheng & Li, Shanling & Thrall, R. M., 2001. "Using DEA to improve the management of congestion in Chinese industries (1981-1997)," Socio-Economic Planning Sciences, Elsevier, vol. 35(4), pages 227-242, December.
    5. Hoshi, Takeo & Kashyap, Anil & Scharfstein, David, 1990. "The role of banks in reducing the costs of financial distress in Japan," Journal of Financial Economics, Elsevier, vol. 27(1), pages 67-88, September.
    6. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    7. Eisenbeis, Robert A, 1977. "Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics," Journal of Finance, American Finance Association, vol. 32(3), pages 875-900, June.
    8. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    9. Meyer, Paul A & Pifer, Howard W, 1970. "Prediction of Bank Failures," Journal of Finance, American Finance Association, vol. 25(4), pages 853-868, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zhang, Weiying & Cooper, W.W. & Deng, Honghui & Parker, Barnett R. & Ruefli, Timothy W., 2010. "Entrepreneurial talent and economic development in China," Socio-Economic Planning Sciences, Elsevier, vol. 44(4), pages 178-192, December.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:42:y:2008:i:3:p:206-220. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.