IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v66y2023ics0275531923001277.html
   My bibliography  Save this article

Tail-risk interconnectedness in the Chinese insurance sector

Author

Listed:
  • Cao, Yufei

Abstract

We investigate tail-risk interconnectedness in the Chinese insurance sector by proposing downside and upside tail-risk spillover networks before and after the onset of the COVID-19 pandemic. The constructed networks allow us to capture marginal tail losses and time-varying tail-risk spillover effects. To identify the tail-risk transmission mechanism, we analyze network metrics. We find that tail-risk interconnectedness increased after the pandemic, showing that the risk level of the insurance sector has risen. Moreover, we use predictive panel regressions to investigate the impact of COVID-19 on tail-risk interconnectedness. We find that insurers’ size, liability-to-asset ratio, equity ratio, and book value per share are common factors that affect downside and upside tail-risk interconnectedness.

Suggested Citation

  • Cao, Yufei, 2023. "Tail-risk interconnectedness in the Chinese insurance sector," Research in International Business and Finance, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:riibaf:v:66:y:2023:i:c:s0275531923001277
    DOI: 10.1016/j.ribaf.2023.102001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531923001277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2023.102001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrieş, Alin Marius & Ongena, Steven & Sprincean, Nicu & Tunaru, Radu, 2022. "Risk spillovers and interconnectedness between systemically important institutions," Journal of Financial Stability, Elsevier, vol. 58(C).
    2. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    3. Bernal, Oscar & Gnabo, Jean-Yves & Guilmin, Grégory, 2014. "Assessing the contribution of banks, insurance and other financial services to systemic risk," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 270-287.
    4. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    5. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
    6. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    7. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    8. Roukny, Tarik & Battiston, Stefano & Stiglitz, Joseph E., 2018. "Interconnectedness as a source of uncertainty in systemic risk," Journal of Financial Stability, Elsevier, vol. 35(C), pages 93-106.
    9. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    10. Naifar, Nader & Shahzad, Syed Jawad Hussain, 2022. "Tail event-based sovereign credit risk transmission network during COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 45(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke, Rui & Shen, Anni & Yin, Man & Tan, Changchun, 2024. "The cross-sector risk contagion among Chinese financial institutions: Evidence from the extreme volatility spillover perspective," Finance Research Letters, Elsevier, vol. 63(C).
    2. Shi, Xiaojun & Du, Baorui, 2024. "Decomposition of social networks and household purchase of insurance as knowledge products," Research in International Business and Finance, Elsevier, vol. 69(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiafei & Wei, Yu, 2018. "The dependence and risk spillover between crude oil market and China stock market: New evidence from a variational mode decomposition-based copula method," Energy Economics, Elsevier, vol. 74(C), pages 565-581.
    2. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    3. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Risk spillovers and diversification between oil and non-ferrous metals during bear and bull market states," Resources Policy, Elsevier, vol. 72(C).
    4. Ferreiro Javier Ojea, 2019. "Structural change in the link between oil and the European stock market: implications for risk management," Dependence Modeling, De Gruyter, vol. 7(1), pages 53-125, January.
    5. Fei Wu & Zhiwei Zhang & Dayong Zhang & Qiang Ji, 2023. "Identifying systemically important financial institutions in China: new evidence from a dynamic copula-CoVaR approach," Annals of Operations Research, Springer, vol. 330(1), pages 119-153, November.
    6. Javier Ojea Ferreiro, 2018. "Contagion spillovers between sovereign and financial European sector from a Delta CoVaR approach," Documentos de Trabajo del ICAE 2018-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    7. Yufei Cao, 2021. "Modeling the dependence structure and systemic risk of all listed insurance companies in the Chinese insurance market," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(4), pages 367-399, December.
    8. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    9. Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    10. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Downside/upside price spillovers between precious metals: A vine copula approach," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 84-102.
    11. Khamis Hamed Al‐Yahyaee & Syed Jawad Hussain Shahzad & Walid Mensi & Seong‐Min Yoon, 2021. "Is there a systemic risk between Sharia, Sukuk, and GCC stock markets? A ΔCoVaR risk metric‐based copula approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2904-2926, April.
    12. Yonghong Jiang & Jinqi Mu & He Nie & Lanxin Wu, 2022. "Time‐frequency analysis of risk spillovers from oil to BRICS stock markets: A long‐memory Copula‐CoVaR‐MODWT method," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3386-3404, July.
    13. Reboredo, Juan C. & Ugolini, Andrea, 2016. "The impact of downward/upward oil price movements on metal prices," Resources Policy, Elsevier, vol. 49(C), pages 129-141.
    14. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    15. Mensi, Walid & Hanif, Waqas & Vo, Xuan Vinh & Choi, Ki-Hong & Yoon, Seong-Min, 2023. "Upside/Downside spillovers between oil and Chinese stock sectors: From the global financial crisis to global pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    16. Uddin, Gazi Salah & Hernandez, Jose Arreola & Shahzad, Syed Jawad Hussain & Kang, Sang Hoon, 2020. "Characteristics of spillovers between the US stock market and precious metals and oil," Resources Policy, Elsevier, vol. 66(C).
    17. Aloui, Riadh & Ben Jabeur, Sami & Mefteh-Wali, Salma, 2022. "Tail-risk spillovers from China to G7 stock market returns during the COVID-19 outbreak: A market and sectoral analysis," Research in International Business and Finance, Elsevier, vol. 62(C).
    18. Xiao, Yang, 2020. "The risk spillovers from the Chinese stock market to major East Asian stock markets: A MSGARCH-EVT-copula approach," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 173-186.
    19. Rehman, Mobeen Ur, 2020. "Do bitcoin and precious metals do any good together? An extreme dependence and risk spillover analysis," Resources Policy, Elsevier, vol. 68(C).
    20. Bei, Zeyun & Lin, Juan & Zhou, Yinggang, 2024. "No safe haven, only diversification and contagion — Intraday evidence around the COVID-19 pandemic," Journal of International Money and Finance, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:66:y:2023:i:c:s0275531923001277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.