IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v44y2015i5p1029-1048.html
   My bibliography  Save this article

Climate change and the slow reorientation of the American car industry (1979–2012): An application and extension of the Dialectic Issue LifeCycle (DILC) model

Author

Listed:
  • Penna, Caetano C.R.
  • Geels, Frank W.

Abstract

This paper uses the Dialectic Issue LifeCycle-model (DILC-model) to analyze the co-evolution of the climate change problem and strategic responses from the American car industry. The longitudinal and multi-dimensional analysis investigates the dynamics of the climate change problem in terms of socio-political mobilization by social movements, scientists, wider publics and policymakers. It also analyses how U.S. automakers responded to mounting pressures with socio-political, economic and innovation strategies oriented towards low-carbon propulsion technologies. We use a mixed methodology with a quantitative analysis of various time-series and an in-depth qualitative case study, which traces interactions between problem-related pressures and industry responses. We conclude that U.S. automakers are slowly reorienting towards low-carbon technologies, but due to weakening pressures have not yet fully committed to comprehensive development and marketing. The paper not only applies the DILC-model, but also proposes three elaborations: (a) the continued diversity of technical solutions, and ‘ups and downs’ in future expectations, creates uncertainty which delays strategic reorientation; (b) firms may develop radical innovations for political and social purposes in early phases of the model; (c) issue lifecycles are also shaped by external influences from other problems and contexts.

Suggested Citation

  • Penna, Caetano C.R. & Geels, Frank W., 2015. "Climate change and the slow reorientation of the American car industry (1979–2012): An application and extension of the Dialectic Issue LifeCycle (DILC) model," Research Policy, Elsevier, vol. 44(5), pages 1029-1048.
  • Handle: RePEc:eee:respol:v:44:y:2015:i:5:p:1029-1048
    DOI: 10.1016/j.respol.2014.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733314002091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2014.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lutsey, Nicholas, 2012. "Regulatory and technology lead-time: The case of US automobile greenhouse gas emission standards," Transport Policy, Elsevier, vol. 21(C), pages 179-190.
    2. Vanessa Oltra & Rene Kemp & Frans P. De Vries, 2010. "Patents as a measure for eco-innovation," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 13(2), pages 130-148.
    3. Bakker, Sjoerd, 2010. "The car industry and the blow-out of the hydrogen hype," Energy Policy, Elsevier, vol. 38(11), pages 6540-6544, November.
    4. Geels, Frank W. & Penna, Caetano C.R., 2015. "Societal problems and industry reorientation: Elaborating the Dialectic Issue LifeCycle (DILC) model and a case study of car safety in the USA (1900–1995)," Research Policy, Elsevier, vol. 44(1), pages 67-82.
    5. Wells, Peter & Nieuwenhuis, Paul, 2012. "Transition failure: Understanding continuity in the automotive industry," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1681-1692.
    6. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2013. "The emergence of an electric mobility trajectory," Energy Policy, Elsevier, vol. 52(C), pages 135-145.
    7. Turnheim, Bruno & Geels, Frank W., 2013. "The destabilisation of existing regimes: Confronting a multi-dimensional framework with a case study of the British coal industry (1913–1967)," Research Policy, Elsevier, vol. 42(10), pages 1749-1767.
    8. Geels, Frank W., 2014. "Reconceptualising the co-evolution of firms-in-industries and their environments: Developing an inter-disciplinary Triple Embeddedness Framework," Research Policy, Elsevier, vol. 43(2), pages 261-277.
    9. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    10. Abeles, Ethan, 2004. "The Ability of Automakers to Introduce a Costly, Regulated New Technology: A Case Study of Automotive Airbags in the U.S. Light-Duty Vehicle Market with Implications for Future Automobile and Light Tr," Institute of Transportation Studies, Working Paper Series qt5cj9h1qr, Institute of Transportation Studies, UC Davis.
    11. Kolk, Ans & Levy, David, 2001. "Winds of Change:: Corporate Strategy, Climate change and Oil Multinationals," European Management Journal, Elsevier, vol. 19(5), pages 501-509, October.
    12. Jens Newig, 2004. "Public Attention, Political Action: the Example of Environmental Regulation," Rationality and Society, , vol. 16(2), pages 149-190, May.
    13. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    14. Luger,Stan, 2000. "Corporate Power, American Democracy, and the Automobile Industry," Cambridge Books, Cambridge University Press, number 9780521631730.
    15. Sperling, Daniel & Gordon, Deborah, 2009. "Two Billion Cars: Driving Toward Sustainability," OUP Catalogue, Oxford University Press, number 9780195376647, Decembrie.
    16. Penna, Caetano C.R. & Geels, Frank W., 2012. "Multi-dimensional struggles in the greening of industry: A dialectic issue lifecycle model and case study," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 999-1020.
    17. Budde, Björn & Alkemade, Floortje & Weber, K. Matthias, 2012. "Expectations as a key to understanding actor strategies in the field of fuel cell and hydrogen vehicles," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1072-1083.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hill, Graeme & Heidrich, Oliver & Creutzig, Felix & Blythe, Phil, 2019. "The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Frank W. Geels & Jonatan Pinkse & Dimitri Zenghelis, 2021. "Productivity opportunities and risks in a transformative,low-carbon and digital age," Working Papers 009, The Productivity Institute.
    3. Ahn, Sang-Jin & Yoon, Ho Young & Lee, Young-Joo, 2021. "Text mining as a tool for real-time technology assessment: Application to the cross-national comparative study on artificial organ technology," Technology in Society, Elsevier, vol. 66(C).
    4. Nihit Goyal & Michael Howlett, 2018. "Technology and Instrument Constituencies as Agents of Innovation: Sustainability Transitions and the Governance of Urban Transport," Energies, MDPI, vol. 11(5), pages 1-14, May.
    5. Sovacool, Benjamin K. & Axsen, Jonn, 2018. "Functional, symbolic and societal frames for automobility: Implications for sustainability transitions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 730-746.
    6. Hoffmann, Sebastian & Weyer, Johannes & Longen, Jessica, 2017. "Discontinuation of the automobility regime? An integrated approach to multi-level governance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 391-408.
    7. Szalavetz Andrea, 2018. "Sustainability-oriented cross-functional collaboration to manage trade-offs and interdependencies," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 54(1), pages 3-17, March.
    8. Vallejo, Bertha, 2015. "The emergence of parallel trajectories in the automobile industry: Environmental issues and the creation of new markets," MERIT Working Papers 2015-037, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    9. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    10. Sylvain Lenfle, 2018. "Projects, Agency and the Multi-Level Perspective: Insights from Numerical Weather Prediction," Post-Print hal-03640771, HAL.
    11. Sylvain Lenfle, 2017. "Projects, Agency and the Multi-Level Perspective," Post-Print hal-01574741, HAL.
    12. Flladina Zilja & Gilbert Kofi Adarkwah & Christopher Albert Sabel, 2022. "Do Environmental Policies Affect MNEs’ Foreign Subsidiary Investments? An Empirical Investigation," Management International Review, Springer, vol. 62(1), pages 53-102, February.
    13. Mäkitie, Tuukka & Normann, Håkon E. & Thune, Taran M. & Sraml Gonzalez, Jakoba, 2019. "The green flings: Norwegian oil and gas industry’s engagement in offshore wind power," Energy Policy, Elsevier, vol. 127(C), pages 269-279.
    14. Geels, Frank W. & Ayoub, Martina, 2023. "A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    15. Horbach, Jens & Rammer, Christian, 2022. "Climate change affectedness and innovation in German firms," ZEW Discussion Papers 22-008, ZEW - Leibniz Centre for European Economic Research.
    16. Chandra Setiawan, Indra & Indarto, & Deendarlianto,, 2021. "Quantitative analysis of automobile sector in Indonesian automotive roadmap for achieving national oil and CO2 emission reduction targets by 2030," Energy Policy, Elsevier, vol. 150(C).
    17. Sillig, Cécile, 2022. "The role of ideology in grassroots innovation: An application of the arenas of development framework to organic in Europe," Ecological Economics, Elsevier, vol. 191(C).
    18. Sovacool, Benjamin K. & Noel, Lance & Orsato, Renato J., 2017. "Stretching, embeddedness, and scripts in a sociotechnical transition: Explaining the failure of electric mobility at Better Place (2007–2013)," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 24-34.
    19. Brian Beckage & Katherine Lacasse & Jonathan M. Winter & Louis J. Gross & Nina Fefferman & Forrest M. Hoffman & Sara S. Metcalf & Travis Franck & Eric Carr & Asim Zia & Ann Kinzig, 2020. "The Earth has humans, so why don’t our climate models?," Climatic Change, Springer, vol. 163(1), pages 181-188, November.
    20. Thomas Magnusson & Viktor Werner, 2023. "Conceptualisations of incumbent firms in sustainability transitions: Insights from organisation theory and a systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 903-919, February.
    21. Chen, Chung-Jen & Guo, Ruey-Shan & Hsiao, Yung-Chang & Chen, Kuo-Liang, 2018. "How business strategy in non-financial firms moderates the curvilinear effects of corporate social responsibility and irresponsibility on corporate financial performance," Journal of Business Research, Elsevier, vol. 92(C), pages 154-167.
    22. Johan Miörner & Jonas Heiberg & Christian Binz, 2021. "Global regime diffusion in space: a missed transition in San Diego’s water sector," GEIST - Geography of Innovation and Sustainability Transitions 2021(08), GEIST Working Paper Series.
    23. Johan Schot & Laur Kanger, 2016. "Deep Transitions: Emergence, Acceleration, Stabilization and Directionality," SPRU Working Paper Series 2016-15, SPRU - Science Policy Research Unit, University of Sussex Business School.
    24. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geels, Frank W. & Penna, Caetano C.R., 2015. "Societal problems and industry reorientation: Elaborating the Dialectic Issue LifeCycle (DILC) model and a case study of car safety in the USA (1900–1995)," Research Policy, Elsevier, vol. 44(1), pages 67-82.
    2. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    3. Mäkitie, Tuukka & Normann, Håkon E. & Thune, Taran M. & Sraml Gonzalez, Jakoba, 2019. "The green flings: Norwegian oil and gas industry’s engagement in offshore wind power," Energy Policy, Elsevier, vol. 127(C), pages 269-279.
    4. Engwall, Mats & Kaulio, Matti & Karakaya, Emrah & Miterev, Maxim & Berlin, Daniel, 2021. "Experimental networks for business model innovation: A way for incumbents to navigate sustainability transitions?," Technovation, Elsevier, vol. 108(C).
    5. Geels, Frank W., 2014. "Reconceptualising the co-evolution of firms-in-industries and their environments: Developing an inter-disciplinary Triple Embeddedness Framework," Research Policy, Elsevier, vol. 43(2), pages 261-277.
    6. Hoffmann, Sebastian & Weyer, Johannes & Longen, Jessica, 2017. "Discontinuation of the automobility regime? An integrated approach to multi-level governance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 391-408.
    7. Philipp Späth & Harald Rohracher & Alanus Von Radecki, 2016. "Incumbent Actors as Niche Agents: The German Car Industry and the Taming of the “Stuttgart E-Mobility Region”," Sustainability, MDPI, vol. 8(3), pages 1-16, March.
    8. Steen, Markus & Weaver, Tyson, 2017. "Incumbents’ diversification and cross-sectorial energy industry dynamics," Research Policy, Elsevier, vol. 46(6), pages 1071-1086.
    9. Thomas Magnusson & Viktor Werner, 2023. "Conceptualisations of incumbent firms in sustainability transitions: Insights from organisation theory and a systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 903-919, February.
    10. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    11. Upham, Dr Paul & Sovacool, Prof Benjamin & Ghosh, Dr Bipashyee, 2022. "Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
    13. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    14. Sovacool, Benjamin K. & Noel, Lance & Orsato, Renato J., 2017. "Stretching, embeddedness, and scripts in a sociotechnical transition: Explaining the failure of electric mobility at Better Place (2007–2013)," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 24-34.
    15. Budde, Björn & Konrad, Kornelia, 2019. "Tentative governing of fuel cell innovation in a dynamic network of expectations," Research Policy, Elsevier, vol. 48(5), pages 1098-1112.
    16. Nihit Goyal & Michael Howlett, 2018. "Technology and Instrument Constituencies as Agents of Innovation: Sustainability Transitions and the Governance of Urban Transport," Energies, MDPI, vol. 11(5), pages 1-14, May.
    17. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.
    18. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    19. Kungl, Gregor & Geels, Frank W., 2016. "The destabilisation of the German electricity industry (1998-2015): Application and extension of a multi-dimensional framework," Research Contributions to Organizational Sociology and Innovation Studies, SOI Discussion Papers 2016-02, University of Stuttgart, Institute for Social Sciences, Department of Organizational Sociology and Innovation Studies.
    20. Monika Winn & Manfred Kirchgeorg & Andrew Griffiths & Martina K. Linnenluecke & Elmar Günther, 2011. "Impacts from climate change on organizations: a conceptual foundation," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 157-173, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:44:y:2015:i:5:p:1029-1048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.