IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v60y2016icp587-598.html
   My bibliography  Save this article

End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust

Author

Listed:
  • Ponce, Pedro
  • Polasko, Kenneth
  • Molina, Arturo

Abstract

Although smart grid technology has been extensively accepted, social factors influence the performance of smart grid systems. This smart technology will enable the automated monitoring and control of the power delivery system, increase the capacity of the power delivery system, and enhance the performance and connectivity of end users. However, the perceptions of end users are a key factor for adoption of this technology. When end users do not fully accept the smart grid, the operation of the smart grid is not satisfactory. Most literature has concentrated on the technological aspects of smart grids; a technological solution may be defined as one that requires a change only in the developed technology, demanding little or no change in human values or ideas of morality about the usage of electrical energy. However, the solutions to the problems of implementing smart grid technology are not to be found only in technological aspects. This paper presents experimental scenarios that use signal detection theory (SDT), a well-known tool in psychology research, to capture the perceptions of end users about smart grid technology. If the perceptions of end users are positive, the performance of the smart grid is improved. End user criteria can be analyzed using SDT. In addition, fuzzy logic type 2 is suggested as a way to increase the descriptive power of fuzzy signal detection theory. To obtain end user perceptions, several experimental scenarios were created using a didactic smart grid system designed by Delorenzo Group Italy. End users were faced with real situations that enabled determination of their perceptions about the smart grid technology. Experimental results of end users׳ perceptions of smart grid technology are shown using SDT, fuzzy detection theory, and fuzzy detection theory type 2. The results show that end users have a conservative criterion because they are not entirely confident in the intelligent technology provided by the smart grid; this conservative criterion limits smart grid performance.

Suggested Citation

  • Ponce, Pedro & Polasko, Kenneth & Molina, Arturo, 2016. "End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 587-598.
  • Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:587-598
    DOI: 10.1016/j.rser.2016.01.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116001313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.01.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anda, Martin & Temmen, Justin, 2014. "Smart metering for residential energy efficiency: The use of community based social marketing for behavioural change and smart grid introduction," Renewable Energy, Elsevier, vol. 67(C), pages 119-127.
    2. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    3. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    4. Clastres, Cédric, 2011. "Smart grids: Another step towards competition, energy security and climate change objectives," Energy Policy, Elsevier, vol. 39(9), pages 5399-5408, September.
    5. Hanimann, Raphael & Vinterbäck, Johan & Mark-Herbert, Cecilia, 2015. "Consumer behavior in renewable electricity: Can branding in accordance with identity signaling increase demand for renewable electricity and strengthen supplier brands?," Energy Policy, Elsevier, vol. 78(C), pages 11-21.
    6. Sharma, Konark & Mohan Saini, Lalit, 2015. "Performance analysis of smart metering for smart grid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 720-735.
    7. Swofford, Jeffrey & Slattery, Michael, 2010. "Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making," Energy Policy, Elsevier, vol. 38(5), pages 2508-2519, May.
    8. Assefa, G. & Frostell, B., 2007. "Social sustainability and social acceptance in technology assessment: A case study of energy technologies," Technology in Society, Elsevier, vol. 29(1), pages 63-78.
    9. Dada, Joseph O., 2014. "Towards understanding the benefits and challenges of Smart/Micro-Grid for electricity supply system in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1003-1014.
    10. Sivarasu, S.R. & Chandira Sekaran, E. & Karthik, P., 2015. "Development of renewable energy based microgrid project implementations for residential consumers in India: Scope, challenges and possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 256-269.
    11. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    12. Chou, Jui-Sheng & Kim, Changwan & Ung, Thanh-Khiet & Yutami, I Gusti Ayu Novi & Lin, Guo-Tai & Son, Hyojoo, 2015. "Cross-country review of smart grid adoption in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 192-213.
    13. Park, Chan-Kook & Kim, Hyun-Jae & Kim, Yang-Soo, 2014. "A study of factors enhancing smart grid consumer engagement," Energy Policy, Elsevier, vol. 72(C), pages 211-218.
    14. Mahmood, Anzar & Javaid, Nadeem & Razzaq, Sohail, 2015. "A review of wireless communications for smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 248-260.
    15. Cédric Clastres, 2011. "Smart grids : Another step towards competition, energy security and climate change objectives," Post-Print halshs-00617702, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    2. Petra Mesarić & Damira Đukec & Slavko Krajcar, 2017. "Exploring the Potential of Energy Consumers in Smart Grid Using Focus Group Methodology," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    3. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    4. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    5. Diego Casado-Mansilla & Apostolos C. Tsolakis & Cruz E. Borges & Oihane Kamara-Esteban & Stelios Krinidis & Jose Manuel Avila & Dimitrios Tzovaras & Diego López-de-Ipiña, 2020. "Socio-Economic Effect on ICT-Based Persuasive Interventions Towards Energy Efficiency in Tertiary Buildings," Energies, MDPI, vol. 13(7), pages 1-26, April.
    6. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    7. Gonçalves, Luisa & Patrício, Lia, 2022. "From smart technologies to value cocreation and customer engagement with smart energy services," Energy Policy, Elsevier, vol. 170(C).
    8. Isaías Gomes & Karol Bot & Maria Graça Ruano & António Ruano, 2022. "Recent Techniques Used in Home Energy Management Systems: A Review," Energies, MDPI, vol. 15(8), pages 1-41, April.
    9. Le Ray, G. & Pinson, P., 2020. "The ethical smart grid: Enabling a fruitful and long-lasting relationship between utilities and customers," Energy Policy, Elsevier, vol. 140(C).
    10. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    11. Gordon Rausser & Wadim Strielkowski & Dalia Å treimikienÄ—, 2018. "Smart meters and household electricity consumption: A case study in Ireland," Energy & Environment, , vol. 29(1), pages 131-146, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Efe Biresselioglu & Muhittin Hakan Demir & Sebnem Altinci, 2022. "Understanding the Citizen’s Role in the Transition to a Smart Energy System: Are We Ready?," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    2. de Wildt, T.E. & Chappin, E.J.L. & van de Kaa, G. & Herder, P.M. & van de Poel, I.R., 2019. "Conflicting values in the smart electricity grid a comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 184-196.
    3. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    4. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    5. Nilsson, Anders & Lazarevic, David & Brandt, Nils & Kordas, Olga, 2018. "Household responsiveness to residential demand response strategies: Results and policy implications from a Swedish field study," Energy Policy, Elsevier, vol. 122(C), pages 273-286.
    6. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    8. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    9. Aurelie Tricoire, 2015. "Uncertainty, vision, and the vitality of the emerging smart grid," Post-Print hal-02351994, HAL.
    10. Diestelmeier, Lea, 2019. "Changing power: Shifting the role of electricity consumers with blockchain technology – Policy implications for EU electricity law," Energy Policy, Elsevier, vol. 128(C), pages 189-196.
    11. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    12. Hugo Lucas & Ruth Carbajo & Tomoo Machiba & Evgeny Zhukov & Luisa F. Cabeza, 2021. "Improving Public Attitude towards Renewable Energy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    13. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    14. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    15. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    16. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    17. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2011. "The inclusion of social aspects in power planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4361-4369.
    18. Rae, Callum & Kerr, Sandy & Maroto-Valer, M. Mercedes, 2020. "Upscaling smart local energy systems: A review of technical barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Lamnatou, Chr. & Chemisana, D. & Cristofari, C., 2022. "Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment," Renewable Energy, Elsevier, vol. 185(C), pages 1376-1391.
    20. Broman Toft, Madeleine & Schuitema, Geertje & Thøgersen, John, 2014. "Responsible technology acceptance: Model development and application to consumer acceptance of Smart Grid technology," Applied Energy, Elsevier, vol. 134(C), pages 392-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:587-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.