IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v57y2016icp412-419.html
   My bibliography  Save this article

A comprehensive review of low voltage ride through of doubly fed induction wind generators

Author

Listed:
  • Tohidi, Sajjad
  • Behnam, Mohammadi-ivatloo

Abstract

Wind power has become an important source of renewable energy in a number of countries around the world, including Denmark, Germany and Spain. Thereupon, connection of wind farms to the grid and their dynamic behavior under different grid conditions has become an important issue in recent years and new grid codes have been introduced. One of the most important issues related to grid codes is the low voltage ride through (LVRT) or fault ride through (FRT) capability of wind farms. Based on such code requirements, wind turbine generators must remain connected to the grid and actively contribute to the system stability during various grid fault scenarios that result in a generator terminal voltage dip. Moreover, wind turbine generators should have the ability to supply reactive power during the faults. In addition, they should supply active and reactive power immediately after fault clearance to support the network frequency and voltage, respectively. In this paper, a comprehensive review of researches published about analysis, modeling and improvement of LVRT of wind turbines with doubly fed induction generator (DFIG) is presented. The review also concludes that more investigations should be carried out to completely fulfill the grid codes׳ requirements. In particular, reactive and active power requirements of grid codes should be taken into account in more depth in the future LVRT solutions.

Suggested Citation

  • Tohidi, Sajjad & Behnam, Mohammadi-ivatloo, 2016. "A comprehensive review of low voltage ride through of doubly fed induction wind generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 412-419.
  • Handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:412-419
    DOI: 10.1016/j.rser.2015.12.155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115015385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hachicha, Fatma & Krichen, Lotfi, 2012. "Rotor power control in doubly fed induction generator wind turbine under grid faults," Energy, Elsevier, vol. 44(1), pages 853-861.
    2. Mohseni, Mansour & Islam, Syed M., 2012. "Review of international grid codes for wind power integration: Diversity, technology and a case for global standard," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3876-3890.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    2. Mohamed Abdelrahem & Christoph Hackl & Ralph Kennel & Jose Rodriguez, 2021. "Low Sensitivity Predictive Control for Doubly-Fed Induction Generators Based Wind Turbine Applications," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    3. Omid Sadeghian & Sajjad Tohidi & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2021. "A Comprehensive Review on Brushless Doubly-Fed Reluctance Machine," Sustainability, MDPI, vol. 13(2), pages 1-39, January.
    4. Ridha Cheikh & Hocine Belmili & Arezki Menacer & Said Drid & L. Chrifi-Alaoui, 2019. "Dynamic behavior analysis under a grid fault scenario of a 2 MW double fed induction generator-based wind turbine: comparative study of the reference frame orientation approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 632-643, August.
    5. Karthik Tamvada & Rohit Babu, 2022. "Control of doubly fed induction generator for power quality improvement: an overview," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2809-2832, December.
    6. Mathias Arbeiter & Martin Hopp & Martin Huhn, 2021. "LVRT Impact on Tower Loads, Drivetrain Torque and Rotational Speed—Measurement Results of a 2-MW Class DFIG Wind Turbine," Energies, MDPI, vol. 14(12), pages 1-13, June.
    7. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    8. Solís-Chaves, J.S. & Rocha-Osorio, C.M. & Murari, A.L.L. & Lira, Valdemir Martins & Sguarezi Filho, Alfeu J., 2018. "Extracting potable water from humid air plus electric wind generation: A possible application for a Brazilian prototype," Renewable Energy, Elsevier, vol. 121(C), pages 102-115.
    9. Md. Rashidul Islam & Md. Najmul Huda & Jakir Hasan & Mohammad Ashraf Hossain Sadi & Ahmed AbuHussein & Tushar Kanti Roy & Md. Apel Mahmud, 2020. "Fault Ride Through Capability Improvement of DFIG Based Wind Farm Using Nonlinear Controller Based Bridge-Type Flux Coupling Non-Superconducting Fault Current Limiter," Energies, MDPI, vol. 13(7), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    2. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    3. Honrubia-Escribano, A. & Gómez-Lázaro, E. & Fortmann, J. & Sørensen, P. & Martin-Martinez, S., 2018. "Generic dynamic wind turbine models for power system stability analysis: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1939-1952.
    4. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    5. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    6. Moghadasi, Amirhasan & Sarwat, Arif & Guerrero, Josep M., 2016. "A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 823-839.
    7. Xie, Wei & Zeng, Pan & Lei, Liping, 2015. "Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine," Energy, Elsevier, vol. 91(C), pages 1070-1080.
    8. Punda, Luka & Capuder, Tomislav & Pandžić, Hrvoje & Delimar, Marko, 2017. "Integration of renewable energy sources in southeast Europe: A review of incentive mechanisms and feasibility of investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 77-88.
    9. Salim, Nur Ashida & Othman, Muhammad Murtadha & Musirin, Ismail & Serwan, Mohd Salleh & Busan, Stendley, 2017. "Risk assessment of dynamic system cascading collapse for determining the sensitive transmission lines and severity of total loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 113-128.
    10. Amer Saeed, M. & Mehroz Khan, Hafiz & Ashraf, Arslan & Aftab Qureshi, Suhail, 2018. "Analyzing effectiveness of LVRT techniques for DFIG wind turbine system and implementation of hybrid combination with control schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2487-2501.
    11. Robles, Eider & Haro-Larrode, Marta & Santos-Mugica, Maider & Etxegarai, Agurtzane & Tedeschi, Elisabetta, 2019. "Comparative analysis of European grid codes relevant to offshore renewable energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 171-185.
    12. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Majid, Md Shah & Rahman, Hasimah Abdul, 2013. "Review of storage schemes for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 237-247.
    13. Jundi Jia & Guangya Yang & Arne Hejde Nielsen, 2018. "Fault Analysis Method Considering Dual-Sequence Current Control of VSCs under Unbalanced Faults," Energies, MDPI, vol. 11(7), pages 1-17, June.
    14. Colak, Ilhami & Fulli, Gianluca & Bayhan, Sertac & Chondrogiannis, Stamatios & Demirbas, Sevki, 2015. "Critical aspects of wind energy systems in smart grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 155-171.
    15. Aya M. Moheb & Enas A. El-Hay & Attia A. El-Fergany, 2022. "Comprehensive Review on Fault Ride-Through Requirements of Renewable Hybrid Microgrids," Energies, MDPI, vol. 15(18), pages 1-30, September.
    16. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2016. "Diversity in solar photovoltaic energy: Implications for innovation and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 331-340.
    17. Atuwo, Tamaraebi, 2018. "Application of Optimized SFCL and STATCOM for the Transient Stability and LVRT Capability Enhancement of Wind Farms," MPRA Paper 88590, University Library of Munich, Germany, revised Jun 2018.
    18. Muhammad Shahzad Nazir & Ahmed N Abdalla, 2020. "The robustness assessment of doubly fed induction generator-wind turbine during short circuit," Energy & Environment, , vol. 31(4), pages 570-582, June.
    19. Ricardo Bessa & Carlos Moreira & Bernardo Silva & Manuel Matos, 2014. "Handling renewable energy variability and uncertainty in power systems operation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 156-178, March.
    20. Hyeong-Jin Lee & Sung-Hun Lim & Jae-Chul Kim, 2019. "Application of a Superconducting Fault Current Limiter to Enhance the Low-Voltage Ride-Through Capability of Wind Turbine Generators," Energies, MDPI, vol. 12(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:412-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.