IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p1939-1952.html
   My bibliography  Save this article

Generic dynamic wind turbine models for power system stability analysis: A comprehensive review

Author

Listed:
  • Honrubia-Escribano, A.
  • Gómez-Lázaro, E.
  • Fortmann, J.
  • Sørensen, P.
  • Martin-Martinez, S.

Abstract

In recent years, international working groups, mainly from the International Electrotechnical Commission (IEC) and the Western Electricity Coordinating Council (WECC), have made a major effort to develop generic —also known as simplified or standard— dynamic wind turbine models to be used for power system stability analysis. These models are required by power system operators to conduct the planning and operation activities of their networks since the use of detailed manufacturer models is not practical. This paper presents a comprehensive review of the work done in this field, based on the results obtained by IEC and WECC working groups in the course of their research, which have motivated the publication of the IEC 61400-27 in February 2015. The final published versions of the generic models developed according to the existing four wind turbine technology types are detailed, highlighting the subsequent changes made during the development phase. The main differences between IEC and WECC generic models are also analyzed. Not only is the final model structure presented but we also provide a complete description of the physical behavior of wind turbines facing power system stability problems. Results are thus of great interest to grid operators, software developers, wind farm owners and researchers focused on the integration of wind energy into power systems.

Suggested Citation

  • Honrubia-Escribano, A. & Gómez-Lázaro, E. & Fortmann, J. & Sørensen, P. & Martin-Martinez, S., 2018. "Generic dynamic wind turbine models for power system stability analysis: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1939-1952.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:1939-1952
    DOI: 10.1016/j.rser.2017.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117309401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiménez, Francisco & Gómez-Lázaro, Emilio & Fuentes, Juan Alvaro & Molina-García, Angel & Vigueras-Rodríguez, Antonio, 2013. "Validation of a DFIG wind turbine model submitted to two-phase voltage dips following the Spanish grid code," Renewable Energy, Elsevier, vol. 57(C), pages 27-34.
    2. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    3. Moghadasi, Amirhasan & Sarwat, Arif & Guerrero, Josep M., 2016. "A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 823-839.
    4. Mohseni, Mansour & Islam, Syed M., 2012. "Review of international grid codes for wind power integration: Diversity, technology and a case for global standard," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3876-3890.
    5. Maurício B. C. Salles & Kay Hameyer & José R. Cardoso & Ahda. P. Grilo & Claudia Rahmann, 2010. "Crowbar System in Doubly Fed Induction Wind Generators," Energies, MDPI, vol. 3(4), pages 1-16, April.
    6. Martins, M. & Perdana, A. & Ledesma, P. & Agneholm, E. & Carlson, O., 2007. "Validation of fixed speed wind turbine dynamic models with measured data," Renewable Energy, Elsevier, vol. 32(8), pages 1301-1316.
    7. García-Gracia, Miguel & Comech, M. Paz & Sallán, Jesús & Llombart, Andrés, 2008. "Modelling wind farms for grid disturbance studies," Renewable Energy, Elsevier, vol. 33(9), pages 2109-2121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ernesto Chavero-Navarrete & Mario Trejo-Perea & Juan-Carlos Jáuregui-Correa & Roberto-Valentín Carrillo-Serrano & José-Gabriel Rios-Moreno, 2019. "Pitch Angle Optimization by Intelligent Adjusting the Gains of a PI Controller for Small Wind Turbines in Areas with Drastic Wind Speed Changes," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    2. Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Jorge Luis Sosa-Avendaño & Pascal Gartmann & Sebastian Frahm & Jens Fortmann & Poul Ejnar Sørensen & Emilio Gómez-Lázaro, 2019. "Fault-Ride Trough Validation of IEC 61400-27-1 Type 3 and Type 4 Models of Different Wind Turbine Manufacturers," Energies, MDPI, vol. 12(16), pages 1-18, August.
    3. Estefania Artigao & Antonio Vigueras-Rodríguez & Andrés Honrubia-Escribano & Sergio Martín-Martínez & Emilio Gómez-Lázaro, 2021. "Wind Resource and Wind Power Generation Assessment for Education in Engineering," Sustainability, MDPI, vol. 13(5), pages 1-27, February.
    4. Raquel Villena-Ruiz & Alberto Lorenzo-Bonache & Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Emilio Gómez-Lázaro, 2019. "Implementation of IEC 61400-27-1 Type 3 Model: Performance Analysis under Different Modeling Approaches," Energies, MDPI, vol. 12(14), pages 1-23, July.
    5. Francisco Jiménez-Buendía & Raquel Villena-Ruiz & Andrés Honrubia-Escribano & Ángel Molina-García & Emilio Gómez-Lázaro, 2019. "Submission of a WECC DFIG Wind Turbine Model to Spanish Operation Procedure 12.3," Energies, MDPI, vol. 12(19), pages 1-16, September.
    6. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    7. He, Xiuqiang & Geng, Hua & Mu, Gang, 2021. "Modeling of wind turbine generators for power system stability studies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Sang Heon Chae & Chul Uoong Kang & Eel-Hwan Kim, 2020. "Field Test of Wind Power Output Fluctuation Control Using an Energy Storage System on Jeju Island," Energies, MDPI, vol. 13(21), pages 1-16, November.
    9. Shair, Jan & Xie, Xiaorong & Yan, Gangui, 2019. "Mitigating subsynchronous control interaction in wind power systems: Existing techniques and open challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 330-346.
    10. Martínez – Lucas, Guillermo & Sarasua, José Ignacio & Fernández – Guillamón, Ana & Molina – García, Ángel, 2021. "Combined hydro-wind frequency control scheme: Modal analysis and isolated power system case example," Renewable Energy, Elsevier, vol. 180(C), pages 1056-1072.
    11. Tania García-Sánchez & Irene Muñoz-Benavente & Emilio Gómez-Lázaro & Ana Fernández-Guillamón, 2020. "Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips," Energies, MDPI, vol. 13(16), pages 1-19, August.
    12. Croonenbroeck, Carsten & Hennecke, David, 2020. "Does the German renewable energy act provide a fair incentive system for onshore wind power? — A simulation analysis," Energy Policy, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raquel Villena-Ruiz & Alberto Lorenzo-Bonache & Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Emilio Gómez-Lázaro, 2019. "Implementation of IEC 61400-27-1 Type 3 Model: Performance Analysis under Different Modeling Approaches," Energies, MDPI, vol. 12(14), pages 1-23, July.
    2. Moghadasi, Amirhasan & Sarwat, Arif & Guerrero, Josep M., 2016. "A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 823-839.
    3. Saheb-Koussa, Djohra & Haddadi, Mourad & Belhamel, Maiouf & Hadji, Seddik & Nouredine, Said, 2010. "Modeling and simulation of the fixed-speed WECS (wind energy conversion system): Application to the Algerian Sahara area," Energy, Elsevier, vol. 35(10), pages 4116-4125.
    4. Muhammad Shahzad Nazir & Ahmed N Abdalla, 2020. "The robustness assessment of doubly fed induction generator-wind turbine during short circuit," Energy & Environment, , vol. 31(4), pages 570-582, June.
    5. Wang, Yunqi & Ravishankar, Jayashri & Phung, Toan, 2016. "A study on critical clearing time (CCT) of micro-grids under fault conditions," Renewable Energy, Elsevier, vol. 95(C), pages 381-395.
    6. Van-Hai Bui & Akhtar Hussain & Woon-Gyu Lee & Hak-Man Kim, 2019. "Hybrid Energy Management System for Operation of Wind Farm System Considering Grid-Code Constraints," Energies, MDPI, vol. 12(24), pages 1-19, December.
    7. Mansouri, M.Mahdi & Nayeripour, Majid & Negnevitsky, Michael, 2016. "Internal electrical protection of wind turbine with doubly fed induction generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 840-855.
    8. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    9. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    10. Moghadasi, Amirhasan & Sarwat, Arif & Guerrero, Josep M., 2016. "Multiobjective optimization in combinatorial wind farms system integration and resistive SFCL using analytical hierarchy process," Renewable Energy, Elsevier, vol. 94(C), pages 366-382.
    11. Shukla, Rishabh Dev & Tripathi, Ramesh Kumar & Thakur, Padmanabh, 2017. "DC grid/bus tied DFIG based wind energy system," Renewable Energy, Elsevier, vol. 108(C), pages 179-193.
    12. Francisco Jiménez-Buendía & Raquel Villena-Ruiz & Andrés Honrubia-Escribano & Ángel Molina-García & Emilio Gómez-Lázaro, 2019. "Submission of a WECC DFIG Wind Turbine Model to Spanish Operation Procedure 12.3," Energies, MDPI, vol. 12(19), pages 1-16, September.
    13. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    14. Chowdhury, M.A. & Hosseinzadeh, N. & Shen, W.X., 2012. "Smoothing wind power fluctuations by fuzzy logic pitch angle controller," Renewable Energy, Elsevier, vol. 38(1), pages 224-233.
    15. Igor Ansoategui & Ekaitz Zulueta & Unai Fernandez-Gamiz & Jose Manuel Lopez-Guede, 2019. "Mechatronic Modeling and Frequency Analysis of the Drive Train of a Horizontal Wind Turbine," Energies, MDPI, vol. 12(4), pages 1-14, February.
    16. Zhang, Xinran & Lu, Chao & Liu, Shichao & Wang, Xiaoyu, 2016. "A review on wide-area damping control to restrain inter-area low frequency oscillation for large-scale power systems with increasing renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 45-58.
    17. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    18. Hocine, Labar & Mounira, Mekki, 2011. "Effect of nonlinear energy on wind farm generators connected to a distribution grid," Energy, Elsevier, vol. 36(5), pages 3255-3261.
    19. Lasantha Meegahapola & Alfeu Sguarezi & Jack Stanley Bryant & Mingchen Gu & Eliomar R. Conde D. & Rafael B. A. Cunha, 2020. "Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends," Energies, MDPI, vol. 13(13), pages 1-35, July.
    20. Carunaiselvane, C. & Chelliah, Thanga Raj, 2017. "Present trends and future prospects of asynchronous machines in renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1028-1041.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:1939-1952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.