IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6785-d917122.html
   My bibliography  Save this article

Comprehensive Review on Fault Ride-Through Requirements of Renewable Hybrid Microgrids

Author

Listed:
  • Aya M. Moheb

    (Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Enas A. El-Hay

    (Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Attia A. El-Fergany

    (Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

Abstract

The world is interested in applying grid codes to increase the reliability of power systems through a micro-grid (MG). In a common practice, the MG comprises a wind farm, and/or photovoltaic (PV) arrays that are integrated with diesel generators and energy storage devices. Fault ride-through (FRT) capability is an important requirement of grid codes. FRT means that the MG is still connected to the grid during numerous disturbances such as faults. This is required to ensure that there is no loss of power generated due to grid faults. Reactive currents must be injected into the grid to increase the power system stability and restore voltage. To enhance FRT for doubly fed induction generator (DFIG) based WT installation, internal control modifications of rotor-side converters and grid-side converters are applied. The solutions that depend on these modifications are traditional and advanced control techniques. Advanced control techniques are needed due to the non-linear nature and less robustness of traditional ones. External hardware devices are also added to improve the FRT of DFIG which are classified into protection devices, reactive power injection devices, and energy storage devices. A comprehensive review of FRT enhancements of DFIG-based WTs, PV systems, and MGs using hardware and software methods is presented in this effort. A classification of FRT of PV systems is characterized plus various inverter control techniques are indicated. Several FRT methods for hybrid PV-WT are presented, with full comparisons. The overall operation and the schematic diagrams of the DFIG-WT with FRT methods are discussed and highlighted. Many Robust control methods for controlling grid connected AC, DC and hybrid AC/DC MGs in power systems are addressed. A total of 210 reported articles were review, including the most up-to-date papers published in the literature. This review may be used as the basis to improve system reliability for those interested in FRT methods. Various traditional and advanced control techniques to improve the FRT abilities are summarized and discussed, including protection devices, reactive power injection devices, and energy storage. In addition, the classifications of FRT hardware methods for DFIG are presented, including grid code requirements.

Suggested Citation

  • Aya M. Moheb & Enas A. El-Hay & Attia A. El-Fergany, 2022. "Comprehensive Review on Fault Ride-Through Requirements of Renewable Hybrid Microgrids," Energies, MDPI, vol. 15(18), pages 1-30, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6785-:d:917122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6785/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Anca D. & Michalke, Gabriele, 2007. "Fault ride-through capability of DFIG wind turbines," Renewable Energy, Elsevier, vol. 32(9), pages 1594-1610.
    2. Maheri, Alireza, 2014. "A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 159-174.
    3. Sanajaoba, Sarangthem & Fernandez, Eugene, 2016. "Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy System," Renewable Energy, Elsevier, vol. 96(PA), pages 1-10.
    4. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    5. Zhang, Jian & Cui, Mingjian & He, Yigang, 2020. "Robustness and adaptability analysis for equivalent model of doubly fed induction generator wind farm using measured data," Applied Energy, Elsevier, vol. 261(C).
    6. Saad, Naggar H. & El-Sattar, Ahmed A. & Mansour, Abd El-Aziz M., 2016. "Improved particle swarm optimization for photovoltaic system connected to the grid with low voltage ride through capability," Renewable Energy, Elsevier, vol. 85(C), pages 181-194.
    7. Nemati, Mohsen & Braun, Martin & Tenbohlen, Stefan, 2018. "Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming," Applied Energy, Elsevier, vol. 210(C), pages 944-963.
    8. Malheiro, André & Castro, Pedro M. & Lima, Ricardo M. & Estanqueiro, Ana, 2015. "Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems," Renewable Energy, Elsevier, vol. 83(C), pages 646-657.
    9. Hachicha, Fatma & Krichen, Lotfi, 2012. "Rotor power control in doubly fed induction generator wind turbine under grid faults," Energy, Elsevier, vol. 44(1), pages 853-861.
    10. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2015. "A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control," Energies, MDPI, vol. 8(6), pages 1-16, June.
    11. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2017. "Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation," Applied Energy, Elsevier, vol. 205(C), pages 1244-1259.
    12. Zhao, Pan & Dai, Yiping & Wang, Jiangfeng, 2014. "Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application," Energy, Elsevier, vol. 70(C), pages 674-684.
    13. Agalar, Sener & Kaplan, Yusuf Alper, 2018. "Power quality improvement using STS and DVR in wind energy system," Renewable Energy, Elsevier, vol. 118(C), pages 1031-1040.
    14. Zeb, Kamran & Islam, Saif Ul & Khan, Imran & Uddin, Waqar & Ishfaq, M. & Curi Busarello, Tiago Davi & Muyeen, S.M. & Ahmad, Iftikhar & Kim, H.J., 2022. "Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Saad, Naggar H. & Sattar, Ahmed A. & Mansour, Abd El-Aziz M., 2015. "Low voltage ride through of doubly-fed induction generator connected to the grid using sliding mode control strategy," Renewable Energy, Elsevier, vol. 80(C), pages 583-594.
    16. Howlader, Abdul Motin & Senjyu, Tomonobu, 2016. "A comprehensive review of low voltage ride through capability strategies for the wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 643-658.
    17. Liu, Zifa & Chen, Yixiao & Zhuo, Ranqun & Jia, Hongjie, 2018. "Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling," Applied Energy, Elsevier, vol. 210(C), pages 1113-1125.
    18. Al kez, Dlzar & Foley, Aoife M. & McIlwaine, Neil & Morrow, D. John & Hayes, Barry P. & Zehir, M. Alparslan & Mehigan, Laura & Papari, Behnaz & Edrington, Chris S. & Baran, Mesut, 2020. "A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation," Energy, Elsevier, vol. 205(C).
    19. Kadri, Ameni & Marzougui, Hajer & Aouiti, Abdelkrim & Bacha, Faouzi, 2020. "Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system," Energy, Elsevier, vol. 192(C).
    20. Bofeng Xu & Yue Yuan & Haoming Liu & Peng Jiang & Ziqi Gao & Xiang Shen & Xin Cai, 2020. "A Pitch Angle Controller Based on Novel Fuzzy-PI Control for Wind Turbine Load Reduction," Energies, MDPI, vol. 13(22), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rania A. Ibrahim & Nahla E. Zakzouk, 2023. "Bi-Functional Non-Superconducting Saturated-Core Inductor for Single-Stage Grid-Tied PV Systems: Filter and Fault Current Limiter," Energies, MDPI, vol. 16(10), pages 1-24, May.
    2. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Luiz Célio Souza Rocha & Ivan Bolis & Karel Janda & Luiz Moreira Coelho Junior, 2021. "Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations," Energies, MDPI, vol. 14(20), pages 1-22, October.
    2. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    3. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    4. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    5. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    6. Damdoum, Amel & Slama-Belkhodja, Ilhem & Pietrzak-David, Maria & Debbou, Mustapha, 2016. "Low voltage ride-through strategies for doubly fed induction machine pumped storage system under grid faults," Renewable Energy, Elsevier, vol. 95(C), pages 248-262.
    7. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    8. Fu, Jianing & Yu, Xiangyang & Gao, Chunyang & Cui, Junda & Li, Youting, 2022. "Nonsingular fast terminal control for the DFIG-based variable-speed hydro-unit," Energy, Elsevier, vol. 244(PA).
    9. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Dougier, Nathanael & Garambois, Pierre & Gomand, Julien & Roucoules, Lionel, 2021. "Multi-objective non-weighted optimization to explore new efficient design of electrical microgrids," Applied Energy, Elsevier, vol. 304(C).
    11. Naderi, Seyed Behzad & Negnevitsky, Michael & Jalilian, Amin & Hagh, Mehrdad Tarafdar, 2016. "Efficient fault ride-through scheme for three phase voltage source inverter-interfaced distributed generation using DC link adjustable resistive type fault current limiter," Renewable Energy, Elsevier, vol. 92(C), pages 484-498.
    12. Islam, M.S. & Das, Barun K. & Das, Pronob & Rahaman, Md Habibur, 2021. "Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada," Energy, Elsevier, vol. 220(C).
    13. Shang, Jingyi & Gao, Jinfeng & Jiang, Xin & Liu, Mingguang & Liu, Dunnan, 2023. "Optimal configuration of hybrid energy systems considering power to hydrogen and electricity-price prediction: A two-stage multi-objective bi-level framework," Energy, Elsevier, vol. 263(PF).
    14. Raju, S.Krishnama & Pillai, G.N., 2016. "Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators," Renewable Energy, Elsevier, vol. 88(C), pages 40-50.
    15. Oviedo-Cepeda, J.C. & Serna-Suárez, Ivan & Osma-Pinto, German & Duarte, Cesar & Solano, Javier & Gabbar, Hossam A., 2020. "Design of tariff schemes as demand response mechanisms for stand-alone microgrids planning," Energy, Elsevier, vol. 211(C).
    16. Cagnano, A. & Caldarulo Bugliari, A. & De Tuglie, E., 2018. "A cooperative control for the reserve management of isolated microgrids," Applied Energy, Elsevier, vol. 218(C), pages 256-265.
    17. Kutaiba Sabah Nimma & Monaaf D. A. Al-Falahi & Hung Duc Nguyen & S. D. G. Jayasinghe & Thair S. Mahmoud & Michael Negnevitsky, 2018. "Grey Wolf Optimization-Based Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids," Energies, MDPI, vol. 11(4), pages 1-27, April.
    18. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    19. Ouyang, Tiancheng & Zhao, Zhongkai & Zhang, Mingliang & Xie, Shutao & Wang, Zhiping, 2022. "A micro off-grid power solution for solid oxide fuel cell waste heat reusing enabled peak load shifting by integrating compressed-air energy storage," Applied Energy, Elsevier, vol. 323(C).
    20. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6785-:d:917122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.