IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4017-d1711959.html
   My bibliography  Save this article

Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines

Author

Listed:
  • Ahmed Muthanna Nori

    (Electrical Engineering Department, College of Engineering, University of Basrah, Basrah 61001, Iraq)

  • Ali Kadhim Abdulabbas

    (Electrical Engineering Department, College of Engineering, University of Basrah, Basrah 61001, Iraq)

  • Tawfiq M. Aljohani

    (Department of Electrical Engineering, College of Engineering at Yanbu, Taibah University, Yanbu Al-Bahr 41911, Saudi Arabia)

Abstract

This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration.

Suggested Citation

  • Ahmed Muthanna Nori & Ali Kadhim Abdulabbas & Tawfiq M. Aljohani, 2025. "Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines," Energies, MDPI, vol. 18(15), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4017-:d:1711959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henok Ayele Behabtu & Majid Vafaeipour & Abraham Alem Kebede & Maitane Berecibar & Joeri Van Mierlo & Kinde Anlay Fante & Maarten Messagie & Thierry Coosemans, 2023. "Smoothing Intermittent Output Power in Grid-Connected Doubly Fed Induction Generator Wind Turbines with Li-Ion Batteries," Energies, MDPI, vol. 16(22), pages 1-37, November.
    2. Singh, Vikram & Fozdar, Manoj & Aljohani, Tawfiq & Singh, Satyendra & Malik, Hasmat, 2025. "A two-stage wind power integrated demand response framework under constrained transmission network for social welfare maximization," Applied Energy, Elsevier, vol. 394(C).
    3. Mansoor Soomro & Zubair Ahmed Memon & Mazhar Hussain Baloch & Nayyar Hussain Mirjat & Laveet Kumar & Quynh T. Tran & Gaetano Zizzo, 2023. "Performance Improvement of Grid-Integrated Doubly Fed Induction Generator under Asymmetrical and Symmetrical Faults," Energies, MDPI, vol. 16(8), pages 1-20, April.
    4. Ali Moghassemi & Sanjeevikumar Padmanaban, 2020. "Dynamic Voltage Restorer (DVR): A Comprehensive Review of Topologies, Power Converters, Control Methods, and Modified Configurations," Energies, MDPI, vol. 13(16), pages 1-38, August.
    5. Aya M. Moheb & Enas A. El-Hay & Attia A. El-Fergany, 2022. "Comprehensive Review on Fault Ride-Through Requirements of Renewable Hybrid Microgrids," Energies, MDPI, vol. 15(18), pages 1-30, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holman Bueno-Contreras & Germán Andrés Ramos & Ramon Costa-Castelló, 2021. "Power Quality Improvement through a UPQC and a Resonant Observer-Based MIMO Control Strategy," Energies, MDPI, vol. 14(21), pages 1-21, October.
    2. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    3. Pingye Wan & Miao Huang & Jinshan Mou & Lili Tao & Shuping Zhang & Zhihua Hu, 2025. "Voltage Unbalance Control Strategy for Local Shading Photovoltaic Grid-Connected System," Energies, MDPI, vol. 18(3), pages 1-24, January.
    4. Aydogmus, Omur & Boztas, Gullu & Celikel, Resat, 2022. "Design and analysis of a flywheel energy storage system fed by matrix converter as a dynamic voltage restorer," Energy, Elsevier, vol. 238(PB).
    5. Soroush Esmaeili & Kasra Ghobadi & Hassan Zare & Mohsin Jamil & Ashraf Ali Khan & Amin Mahmoudi, 2022. "A Trans-Inverse Magnetic Coupling Single-Phase AC-AC Converter," Energies, MDPI, vol. 15(12), pages 1-25, June.
    6. Rania A. Ibrahim & Nahla E. Zakzouk, 2023. "Bi-Functional Non-Superconducting Saturated-Core Inductor for Single-Stage Grid-Tied PV Systems: Filter and Fault Current Limiter," Energies, MDPI, vol. 16(10), pages 1-24, May.
    7. Rafael Neto & Yandi Landera & Francisco Neves & Helber de Souza & Marcelo Cavalcanti & Gustavo Azevedo, 2021. "Attenuation of Zero Sequence Voltage Using a Conventional Three-Wire Dynamic Voltage Restorer," Energies, MDPI, vol. 14(5), pages 1-14, February.
    8. Ievgen Verbytskyi & Mykola Lukianov & Kawsar Nassereddine & Bohdan Pakhaliuk & Oleksandr Husev & Ryszard Michał Strzelecki, 2022. "Power Converter Solutions for Industrial PV Applications—A Review," Energies, MDPI, vol. 15(9), pages 1-33, April.
    9. Naveed Ashraf & Ghulam Abbas & Ali Raza & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "A Single-Phase Compact-Sized Matrix Converter with Symmetrical Bipolar Buck and Boost Output Voltage Control," Energies, MDPI, vol. 15(20), pages 1-20, October.
    10. Jian Xue & Jingran Ma & Xingyi Ma & Lei Zhang & Jing Bai, 2024. "Research on Voltage Prediction Using LSTM Neural Networks and Dynamic Voltage Restorers Based on Novel Sliding Mode Variable Structure Control," Energies, MDPI, vol. 17(22), pages 1-17, November.
    11. Asadi Aghajari, H. & Niknam, T. & Shasadeghi, M. & Sharifhosseini, S.M. & Taabodi, M.H. & Sheybani, Ehsan & Javidi, Giti & Pourbehzadi, Motahareh, 2025. "Analyzing complexities of integrating Renewable Energy Sources into Smart Grid: A comprehensive review," Applied Energy, Elsevier, vol. 383(C).
    12. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    13. Zhenyu Li & Ranchen Yang & Xiao Guo & Ziming Wang & Guozhu Chen, 2022. "A Novel Voltage Sag Detection Method Based on a Selective Harmonic Extraction Algorithm for Nonideal Grid Conditions," Energies, MDPI, vol. 15(15), pages 1-21, July.
    14. Davide Astolfi & Silvia Iuliano & Antony Vasile & Marco Pasetti & Salvatore Dello Iacono & Alfredo Vaccaro, 2024. "Wind Turbine Static Errors Related to Yaw, Pitch or Anemometer Apparatus: Guidelines for the Diagnosis and Related Performance Assessment," Energies, MDPI, vol. 17(24), pages 1-34, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4017-:d:1711959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.