IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp886-898.html
   My bibliography  Save this article

Comparative life cycle assessment of different municipal solid waste management scenarios in Iran

Author

Listed:
  • Rajaeifar, Mohammad Ali
  • Tabatabaei, Meisam
  • Ghanavati, Hossein
  • Khoshnevisan, Benyamin
  • Rafiee, Shahin

Abstract

The aim of this study was to review and assess the different municipal solid waste management (MSW) scenarios using a comparative life cycle assessment approach in Iran. For this purpose, the capital of Iran was selected and five different scenarios including: anaerobic digestion (AD, Sc-0), landfilling combined with composting (Sc-1), incineration (Sc-2), incineration combined with composting (Sc-3), and AD combined with incineration (Sc-4) were taken into consideration. The results obtained showed that the scenarios Sc-3 and Sc-1 led to the most adverse environmental impact in the Human Health and Ecosystem Quality damage categories. In the Climate Change damage category, the scenario Sc-1 resulted in the worst impact while the other scenarios showed improving impacts on this damage category. Also, the scenario Sc-1 had the least helpful effect on the Resources damage category. The overall analysis of different scenarios implied that the scenario Sc-1 was the worst scenario among the studied scenarios. The results also showed that the most eco-friendly scenario to be implemented in the future would be the combination of AD with incineration (Sc-4).

Suggested Citation

  • Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Ghanavati, Hossein & Khoshnevisan, Benyamin & Rafiee, Shahin, 2015. "Comparative life cycle assessment of different municipal solid waste management scenarios in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 886-898.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:886-898
    DOI: 10.1016/j.rser.2015.06.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115006097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.06.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gunamantha, Made & Sarto,, 2012. "Life cycle assessment of municipal solid waste treatment to energy options: Case study of KARTAMANTUL region, Yogyakarta," Renewable Energy, Elsevier, vol. 41(C), pages 277-284.
    2. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heidari, Mohammad Davoud, 2014. "Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran," Energy, Elsevier, vol. 66(C), pages 139-149.
    3. Cherubini, Francesco & Bargigli, Silvia & Ulgiati, Sergio, 2009. "Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration," Energy, Elsevier, vol. 34(12), pages 2116-2123.
    4. Chauhan, Manish Kumar & Varun & Chaudhary, Sachin & Kumar, Suneel & Samar, 2011. "Life cycle assessment of sugar industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3445-3453, September.
    5. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    6. Schluchter Wolf & Rybaczewska- Błażejowska Magdalena, 2012. "Life cycle sustainability assessment of municipal waste management systems," Management, Sciendo, vol. 16(2), pages 361-372, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    2. Azad Pashaki, Saeed Ghanbari & Khojastehpour, Mehdi & Ebrahimi-Nik, Mohammadali & Rohani, Abbas, 2021. "Treatment of municipal landfill leachate: Optimization of organic loading rate in a two-stage CSTR followed by aerobic degradation," Renewable Energy, Elsevier, vol. 163(C), pages 1210-1221.
    3. Dehkordi, Seyed Mohammad Mehdi Noorbakhsh & Jahromi, Ahmad Reza Taghipour & Ferdowsi, Ali & Shumal, Mohammad & Dehnavi, Ali, 2020. "Investigation of biogas production potential from mechanical separated municipal solid waste as an approach for developing countries (case study: Isfahan-Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
    5. Ramos, Ana & Rouboa, Abel, 2022. "Life cycle thinking of plasma gasification as a waste-to-energy tool: Review on environmental, economic and social aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    7. Khoshnevisan, Benyamin & Shafiei, Marzieh & Rajaeifar, Mohammad Ali & Tabatabaei, Meisam, 2016. "Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach," Energy, Elsevier, vol. 114(C), pages 935-950.
    8. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    9. Liu, Yili & Xing, Peixuan & Liu, Jianguo, 2017. "Environmental performance evaluation of different municipal solid waste management scenarios in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 98-106.
    10. Anyaoku, Chukwunonso Chinedu & Baroutian, Saeid, 2018. "Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 982-991.
    11. Chen, Wei & Geng, Yong & Hong, Jinglan & Kua, Harn Wei & Xu, Changqing & Yu, Nan, 2017. "Life cycle assessment of antibiotic mycelial residues management in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 830-838.
    12. Ahmad Nadim Azimi & Sébastien M. R. Dente & Seiji Hashimoto, 2020. "Analyzing Waste Management System Alternatives for Kabul City, Afghanistan: Considering Social, Environmental, and Economic Aspects," Sustainability, MDPI, vol. 12(23), pages 1-15, November.
    13. Suraj Adebayo Opatokun & Ana Lopez-Sabiron & German Ferreira & Vladimir Strezov, 2017. "Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    14. Moult, J.A. & Allan, S.R. & Hewitt, C.N. & Berners-Lee, M., 2018. "Greenhouse gas emissions of food waste disposal options for UK retailers," Food Policy, Elsevier, vol. 77(C), pages 50-58.
    15. Rezaei, Mahdi & Ghobadian, Barat & Samadi, Seyed Hashem & Karimi, Samira, 2018. "Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran," Energy, Elsevier, vol. 152(C), pages 46-56.
    16. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heijungs, Reinout & Tabatabaei, Meisam, 2016. "Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment," Energy, Elsevier, vol. 106(C), pages 87-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milutinović, Biljana & Stefanović, Gordana & Đekić, Petar S. & Mijailović, Ivan & Tomić, Mladen, 2017. "Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis," Energy, Elsevier, vol. 137(C), pages 917-926.
    2. Soam, Shveta & Kumar, Ravindra & Gupta, Ravi P. & Sharma, Pankaj K. & Tuli, Deepak K. & Das, Biswapriya, 2015. "Life cycle assessment of fuel ethanol from sugarcane molasses in northern and western India and its impact on Indian biofuel programme," Energy, Elsevier, vol. 83(C), pages 307-315.
    3. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
    4. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    5. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    6. Hiloidhari, Moonmoon & Vijay, Vandit & Banerjee, Rangan & Baruah, D.C. & Rao, Anand B., 2021. "Energy-carbon-water footprint of sugarcane bioenergy: A district-level life cycle assessment in the state of Maharashtra, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Ana Ramos & Carlos Afonso Teixeira & Abel Rouboa, 2018. "Environmental Analysis of Waste-to-Energy—A Portuguese Case Study," Energies, MDPI, vol. 11(3), pages 1-26, March.
    8. Sevigné Itoiz, E. & Gasol, C.M & Farreny, R. & Rieradevall, J. & Gabarrell, X., 2013. "CO2ZW: Carbon footprint tool for municipal solid waste management for policy options in Europe. Inventory of Mediterranean countries," Energy Policy, Elsevier, vol. 56(C), pages 623-632.
    9. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    10. G. Gnanachandrasamy & C. Dushiyanthan & T. Jeyavel Rajakumar & Yongzhang Zhou, 2020. "Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 759-789, February.
    11. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    12. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    13. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    14. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    15. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    16. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    17. Dzikuć Maciej, 2015. "Environmental management with the use of LCA in the Polish energy system," Management, Sciendo, vol. 19(1), pages 89-97, May.
    18. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    19. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Jamie E. Filer & Justin D. Delorit & Andrew J. Hoisington & Steven J. Schuldt, 2020. "Optimizing the Environmental and Economic Sustainability of Remote Community Infrastructure," Sustainability, MDPI, vol. 12(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:886-898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.