IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p548-d134639.html
   My bibliography  Save this article

Environmental Analysis of Waste-to-Energy—A Portuguese Case Study

Author

Listed:
  • Ana Ramos

    (INEGI-FEUP, Institute of Science and Innovation in Mechanical and Industrial Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal)

  • Carlos Afonso Teixeira

    (CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal)

  • Abel Rouboa

    (CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
    CIENER-INEGI, Centre for Renewable Energy Research, Institute of Science and Innovation in Mechanical and Industrial Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal)

Abstract

Environmental evaluation of the waste treatment processes for the area of Greater Porto (Portugal) is presented for the year 2015. The raw data for the energy recovery plant (ERP) provided by the waste management entity were modelled into nine environmental impact categories, resorting to a life cycle assessment dedicated software (GaBi) for the treatment of 1 tonne of residues. Also, a sensitivity analysis was conducted for five scenarios in order to verify the assessment quality. Results were compared to two European average situations (typical incineration plant and sanitary landfill with no waste pre-treatment), which showed that these facilities perform better or at the same level as the average European situation, mostly due to the high efficiency observed at the ERP and to the electricity production in the incineration process. A detailed analysis concluded that these helped to mitigate the environmental impacts caused by some of the processes involved in the waste-to-energy technology (landfill showing the harder impacts), by saving material resources as well as avoiding emissions to fresh water and air. The overall performance of the energy recovery plant was relevant, 1 tonne of waste saving up to 1.3 million kg of resources and materials. Regarding the environmental indicators, enhanced results were achieved especially for the global warming potential (−171 kg CO 2 -eq. ), eutrophication potential (−39 × 10 −3 kg PO 4 -eq. ) and terrestrial ecotoxicity potential (−59 × 10 −3 kg DCB-eq. ) categories. This work was the first to characterize this Portuguese incineration plant according to the used methodology, supporting the necessary follow-up required by legal frameworks proposed by European Union (EU), once this facility serves a wide populational zone and therefore is representative of the current waste management tendency in the country. LCA (life cycle assessment) was confirmed as a suitable and reliable approach to evaluate the environmental impacts of the waste management scenarios, acting as a functional tool that helps decision-makers to proceed accordingly.

Suggested Citation

  • Ana Ramos & Carlos Afonso Teixeira & Abel Rouboa, 2018. "Environmental Analysis of Waste-to-Energy—A Portuguese Case Study," Energies, MDPI, vol. 11(3), pages 1-26, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:548-:d:134639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/548/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/548/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongliang Zhang & Guangqing Huang & Yimin Xu & Qinghua Gong, 2015. "Waste-to-Energy in China: Key Challenges and Opportunities," Energies, MDPI, vol. 8(12), pages 1-15, December.
    2. Gunamantha, Made & Sarto,, 2012. "Life cycle assessment of municipal solid waste treatment to energy options: Case study of KARTAMANTUL region, Yogyakarta," Renewable Energy, Elsevier, vol. 41(C), pages 277-284.
    3. Changkook Ryu & Donghoon Shin, 2012. "Combined Heat and Power from Municipal Solid Waste: Current Status and Issues in South Korea," Energies, MDPI, vol. 6(1), pages 1-13, December.
    4. Menikpura, S.N.M. & Sang-Arun, Janya & Bengtsson, Magnus, 2016. "Assessment of environmental and economic performance of Waste-to-Energy facilities in Thai cities," Renewable Energy, Elsevier, vol. 86(C), pages 576-584.
    5. Stefanie Hellweg & Gabor Doka & Göran Finnveden & Konrad Hungerbühler, 2005. "Assessing the Eco‐efficiency of End‐of‐Pipe Technologies with the Environmental Cost Efficiency Indicator," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 189-203, October.
    6. Yevgeniya Arushanyan & Anna Björklund & Ola Eriksson & Göran Finnveden & Maria Ljunggren Söderman & Jan-Olov Sundqvist & Åsa Stenmarck, 2017. "Environmental Assessment of Possible Future Waste Management Scenarios," Energies, MDPI, vol. 10(2), pages 1-27, February.
    7. Ola Eriksson & Göran Finnveden, 2017. "Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO 2 Emissions," Energies, MDPI, vol. 10(4), pages 1-18, April.
    8. Gengyuan Liu & Zhifeng Yang & Bin Chen & Yan Zhang & Meirong Su & Lixiao Zhang, 2013. "Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China," Energies, MDPI, vol. 6(10), pages 1-21, October.
    9. Tarantini, Mario & Loprieno, Arianna Dominici & Cucchi, Eleonora & Frenquellucci, Ferdinando, 2009. "Life Cycle Assessment of waste management systems in Italian industrial areas: Case study of 1st Macrolotto of Prato," Energy, Elsevier, vol. 34(5), pages 613-622.
    10. Ola Eriksson, 2017. "Energy and Waste Management," Energies, MDPI, vol. 10(7), pages 1-7, July.
    11. Schluchter Wolf & Rybaczewska- Błażejowska Magdalena, 2012. "Life cycle sustainability assessment of municipal waste management systems," Management, Sciendo, vol. 16(2), pages 361-372, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramos, Ana & Rouboa, Abel, 2022. "Life cycle thinking of plasma gasification as a waste-to-energy tool: Review on environmental, economic and social aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Ana Ramos & Carlos Afonso Teixeira & Abel Rouboa, 2019. "Environmental Assessment of Municipal Solid Waste by Two-Stage Plasma Gasification," Energies, MDPI, vol. 12(1), pages 1-16, January.
    3. Carlos Morón & Jorge Pablo Diaz & Daniel Ferrández & Pablo Saiz, 2018. "Design, Development and Implementation of a Weather Station Prototype for Renewable Energy Systems," Energies, MDPI, vol. 11(9), pages 1-13, August.
    4. Behnam Dastjerdi & Vladimir Strezov & Ravinder Kumar & Masud Behnia, 2022. "Environmental Impact Assessment of Solid Waste to Energy Technologies and Their Perspectives in Australia," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    5. Dimitar Karakashev & Yifeng Zhang, 2018. "BioEnergy and BioChemicals Production from Biomass and Residual Resources," Energies, MDPI, vol. 11(8), pages 1-6, August.
    6. Santiago Alzate & Bonie Restrepo-Cuestas & Álvaro Jaramillo-Duque, 2019. "Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios," Resources, MDPI, vol. 8(1), pages 1-16, March.
    7. Dastjerdi, B. & Strezov, V. & Kumar, R. & Behnia, M., 2019. "An evaluation of the potential of waste to energy technologies for residual solid waste in New South Wales, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Stergios Vakalis & Konstantinos Moustakas, 2019. "Applications of the 3T Method and the R1 Formula as Efficiency Assessment Tools for Comparing Waste-to-Energy and Landfilling," Energies, MDPI, vol. 12(6), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Ramos & Carlos Afonso Teixeira & Abel Rouboa, 2019. "Environmental Assessment of Municipal Solid Waste by Two-Stage Plasma Gasification," Energies, MDPI, vol. 12(1), pages 1-16, January.
    2. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    3. Xingpeng Chen & Jiaxing Pang & Zilong Zhang & Hengji Li, 2014. "Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-14, December.
    4. Milutinović, Biljana & Stefanović, Gordana & Đekić, Petar S. & Mijailović, Ivan & Tomić, Mladen, 2017. "Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis," Energy, Elsevier, vol. 137(C), pages 917-926.
    5. Glenn Baxter & Panarat Srisaeng & Graham Wild, 2018. "An Assessment of Airport Sustainability, Part 1—Waste Management at Copenhagen Airport," Resources, MDPI, vol. 7(1), pages 1-24, March.
    6. Barbara Mendecka & Lidia Lombardi & Paweł Gładysz & Wojciech Stanek, 2018. "Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy," Energies, MDPI, vol. 11(4), pages 1-20, March.
    7. Jara Laso & Isabel García-Herrero & María Margallo & Alba Bala & Pere Fullana-i-Palmer & Angel Irabien & Rubén Aldaco, 2019. "LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain," Energies, MDPI, vol. 12(7), pages 1-18, April.
    8. Dmitry Porshnov, 2022. "Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    9. Long Zhang & Wuliyasu Bai & Jingzheng Ren, 2023. "Waste-to-Energy: A Midas Touch for Turning Waste into Energy," Energies, MDPI, vol. 16(5), pages 1-5, February.
    10. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Ghanavati, Hossein & Khoshnevisan, Benyamin & Rafiee, Shahin, 2015. "Comparative life cycle assessment of different municipal solid waste management scenarios in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 886-898.
    11. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    12. Marileena Koskela & Jarmo Vehmas, 2012. "Defining Eco‐efficiency: A Case Study on the Finnish Forest Industry," Business Strategy and the Environment, Wiley Blackwell, vol. 21(8), pages 546-566, December.
    13. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    14. Kasper Górny & Natalia Idaszewska & Zuzanna Sydow & Krzysztof Bieńczak, 2021. "Modelling the Carbon Footprint of Various Fruit and Vegetable Products Based on a Company’s Internal Transport Data," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    15. Antoine Beylot & Antoine Hochar & Pascale Michel & Marie Descat & Yannick Ménard & Jacques Villeneuve, 2018. "Municipal Solid Waste Incineration in France: An Overview of Air Pollution Control Techniques, Emissions, and Energy Efficiency," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1016-1026, October.
    16. Carmen Callao & M. Pilar Latorre & Margarita Martinez-Núñez, 2021. "Understanding Hazardous Waste Exports for Disposal in Europe: A Contribution to Sustainable Development," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    17. Jara Laso & Cristina Campos & Ana Fernández-Ríos & Daniel Hoehn & Andrea del Río & Israel Ruiz-Salmón & Jorge Cristobal & Ainoa Quiñones & Francisco José Amo-Setién & María del Carmen Ortego & Sergio , 2020. "Looking for Answers to Food Loss and Waste Management in Spain from a Holistic Nutritional and Economic Approach," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    18. Chen, Qiuwen & Ma, Xiaohan & Hu, Jiayu & Zhang, Xiaohong, 2023. "Comparison of comprehensive performance of kiwifruit production in China, Iran, and Italy based on emergy and carbon emissions," Ecological Modelling, Elsevier, vol. 483(C).
    19. Jörg Schweinle & Natalia Geng & Susanne Iost & Holger Weimar & Dominik Jochem, 2020. "Monitoring Sustainability Effects of the Bioeconomy: A Material Flow Based Approach Using the Example of Softwood Lumber and Its Core Product Epal 1 Pallet," Sustainability, MDPI, vol. 12(6), pages 1-27, March.
    20. Song, Jinbo & Sun, Yan & Jin, Lulu, 2017. "PESTEL analysis of the development of the waste-to-energy incineration industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 276-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:548-:d:134639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.